WCRP CMIP6 CMIP MRI MRI-ESM2-0 historical

Yukimoto, Seiji et al.

Dataset Group
Summary
These data include all datasets published for 'CMIP6.CMIP.MRI.MRI-ESM2-0.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MRI-ESM2.0 climate model, released in 2017, includes the following components: aerosol: MASINGAR mk2r4 (TL95; 192 x 96 longitude/latitude; 80 levels; top level 0.01 hPa), atmos: MRI-AGCM3.5 (TL159; 320 x 160 longitude/latitude; 80 levels; top level 0.01 hPa), atmosChem: MRI-CCM2.1 (T42; 128 x 64 longitude/latitude; 80 levels; top level 0.01 hPa), land: HAL 1.0, ocean: MRI.COM4.4 (tripolar primarily 0.5 deg latitude/1 deg longitude with meridional refinement down to 0.3 deg within 10 degrees north and south of the equator; 360 x 364 longitude/latitude; 61 levels; top grid cell 0-2 m), ocnBgchem: MRI.COM4.4, seaIce: MRI.COM4.4. The model was run by the Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan (MRI) in native nominal resolutions: aerosol: 250 km, atmos: 100 km, atmosChem: 250 km, land: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Dr. Seiji Yukimoto (
 yukimoto@nullmri-jma.go.jp
)

Dr. Tsuyoshi Koshiro (
 tkoshiro@nullmri-jma.go.jp
0000-0003-2971-7446)

Dr. Hideaki Kawai (
 h-kawai@nullmri-jma.go.jp
)

Dr. Naga Oshima (
 oshima@nullmri-jma.go.jp
0000-0002-8451-2411)

Dr. Kohei Yoshida (
 kyoshida@nullmri-jma.go.jp
)

Dr. Shogo Urakawa (
 surakawa@nullmri-jma.go.jp
)

Hiroyuki Tsujino (
 htsujino@nullmri-jma.go.jp
0000-0003-3336-0275)

Makoto Deushi (
 mdeushi@nullmri-jma.go.jp
0000-0002-0373-3918)

Taichu Tanaka (
 yatanaka@nullmri-jma.go.jp
)

Masahiro Hosaka (
 mhosaka@nullmri-jma.go.jp
)

Hiromasa Yoshimura (
 hyoshimu@nullmri-jma.go.jp
)

Eiki Shindo (
 eishindo@nullmri-jma.go.jp
)

Ryo Mizuta (
 rmizuta@nullmri-jma.go.jp
)

Dr. Masayoshi Ishii (
 maish@nullmri-jma.go.jp
)

Yukimasa Adachi (
 yadachi@nullmri-jma.go.jp
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-16 to 2014-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
11.40 TiB (12535089211348 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-06-12
Cite as
Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa (2023). MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_5243965

BibTeX RIS
Description
as consistent as the model(s) MRI-ESM2-0
Description
All TQA checks were passed for WCRP CMIP6 CMIP MRI MRI-ESM2-0 historical.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-03-18
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Is part of

[1] DOI Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa. (2019). MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. doi:10.22033/ESGF/CMIP6.6842

Is referenced by

[1] DOI Burke, Eleanor J.; Zhang, Yu; Krinner, Gerhard. (2020). Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. doi:10.5194/tc-14-3155-2020
[2] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James R.; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Santana-Falcón, Yeray; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. doi:10.5194/bg-17-3439-2020
[3] DOI Faye, Aissatou; Akinsanola, Akintomide Afolayan. (2021). Evaluation of extreme precipitation indices over West Africa in CMIP6 models. doi:10.1007/s00382-021-05942-2
[4] DOI Turnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Deushi, Makoto; Emmons, Louisa; Good, Peter; Horowitz, Larry; John, Jasmin G.; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivié, Dirk; Oshima, Naga; Schulz, Michael; Sellar, Alistair; Shim, Sungbo; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, Jie. (2020). Historical and future changes in air pollutants from CMIP6 models. doi:10.5194/acp-20-14547-2020
[5] DOI Zhang, Kequan; Duan, Jiakang; Zhao, Siyi; Zhang, Jiankai; Keeble, James; Liu, Hongwen. (2021). Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. doi:10.1007/s00376-021-0442-2
[6] DOI Emmenegger, Todd; Kuo, Yi-Hung; Xie, Shaocheng; Zhang, Chengzhu; Tao, Cheng; Neelin, J. David. (2022). Evaluating Tropical Precipitation Relations in CMIP6 Models with ARM Data. doi:10.1175/jcli-d-21-0386.1
[7] DOI Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Jian. (2021). Snow Depth Trends from CMIP6 Models Conflict with Observational Evidence. doi:10.1175/jcli-d-21-0177.1
[8] DOI Cai, Wenju; Yang, Kai; Wu, Lixin; Huang, Gang; Santoso, Agus; Ng, Benjamin; Wang, Guojian; Yamagata, Toshio. (2020). Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. doi:10.1038/s41558-020-00943-1
[9] DOI Su, Xiaole; Wu, Tongwen; Zhang, Jie; Zhang, Yong; Jin, Junli; Zhou, Qing; Zhang, Fang; Liu, Yiming; Zhou, Yumeng; Zhang, Lin; Turnock, Steven T.; Furtado, Kalli. (2022). Present-Day PM2.5 over Asia: Simulation and Uncertainty in CMIP6 ESMs. doi:10.1007/s13351-022-1202-7
[10] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43
[11] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry. (2022). Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022
[12] DOI Singh, Charu. (2022). Intra-seasonal oscillations of South Asian summer monsoon in coupled climate model cohort CMIP6. doi:10.1007/s00382-022-06323-z
[13] DOI Zhang, Zhentao; Sun, Shuang; Zhang, Fangliang; Guo, Shibo; Guo, Erjing; Liu, Zhijuan; Zhao, Jin; Zhao, Chuang; Li, Tao; Yang, Xiaoguang. (2022). Using estimated radiation in crop models amplified the negative impacts of climate variability on maize and winter wheat yields in China. doi:10.1016/j.agrformet.2022.108914
[14] DOI Ngoma, Hamida; Ayugi, Brian; Onyutha, Charles; Babaousmail, Hassen; Sian, Kenny Lim; Iyakaremye, Vedaste; Mumo, Richard; Ongoma, Victor. (2022). Projected Changes in Rainfall Over Uganda Based on CMIP6 Models. doi:10.21203/rs.3.rs-894721/v1
[15] DOI Wang, Shizhu; Wang, Qiang; Wang, Muyin; Lohmann, Gerrit; Qiao, Fangli. (2022). Arctic Ocean Freshwater in CMIP6 Coupled Models. doi:10.1029/2022ef002878
[16] DOI Langan, Joseph A.; Bell, Richard J.; Collie, Jeremy S. (2022). Taking stock: Is recovery of a depleted population possible in a changing climate?. doi:10.1111/fog.12599
[17] DOI Rashid, Haroon; Yang, Kaijie; Zeng, Aicong; Ju, Song; Rashid, Abdur; Guo, Futao; Lan, Siren. (2021). Predicting the Hydrological Impacts of Future Climate Change in a Humid-Subtropical Watershed. doi:10.3390/atmos13010012
[18] DOI Dahlke, Flemming T.; Wohlrab, Sylke; Butzin, Martin; Pörtner, Hans-Otto. (2020). Thermal bottlenecks in the life cycle define climate vulnerability of fish. doi:10.1126/science.aaz3658
[19] DOI Weijer, W.; Cheng, W.; Garuba, O. A.; Hu, A.; Nadiga, B. T. (2020). CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation. doi:10.1029/2019gl086075
[20] DOI Morgenstern, Olaf; Kinnison, Douglas E.; Mills, Michael; Michou, Martine; Horowitz, Larry W.; Lin, Pu; Deushi, Makoto; Yoshida, Kohei; O’Connor, Fiona M.; Tang, Yongming; Abraham, N. Luke; Keeble, James; Dennison, Fraser; Rozanov, Eugene; Egorova, Tatiana; Sukhodolov, Timofei; Zeng, Guang. (2022). Comparison of Arctic and Antarctic Stratospheric Climates in Chemistry Versus No‐Chemistry Climate Models. doi:10.1029/2022jd037123
[21] DOI Zeng, Guang; Morgenstern, Olaf; Williams, Jonny H. T.; O’Connor, Fiona M.; Griffiths, Paul T.; Keeble, James; Deushi, Makoto; Horowitz, Larry W.; Naik, Vaishali; Emmons, Louisa K.; Abraham, N. Luke; Archibald, Alexander T.; Bauer, Susanne E.; Hassler, Birgit; Michou, Martine; Mills, Michael J.; Murray, Lee T.; Oshima, Naga; Sentman, Lori T.; Tilmes, Simone; Tsigaridis, Kostas; Young, Paul J. (2022). Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models. doi:10.1029/2022jd036452
[22] DOI Akinsanola, Akintomide Afolayan; Ogunjobi, Kehinde O; Abolude, Akintayo T; Salack, Seyni. (2021). Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. doi:10.1088/1748-9326/abed7a
[23] DOI Jönsson, A., Bender, F. A. (2022). Persistence and Variability of Earth`s Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. doi:10.1175/jcli-d-20-0970.1
[24] DOI Azirani, Tayebeh Akbari; Ghorbani, Hossein. (2023). The impact of climate change on Quaternary glaciers of Gharaghom Basin in Iran. doi:10.1007/s00704-023-04701-z
[25] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei. (2021). The Brewer–Dobson circulation in CMIP6. doi:10.5194/acp-21-13571-2021
[26] DOI Kunchala, Ravi Kumar; Attada, Raju; Karumuri, Rama Krishna; Seelanki, Vivek; Singh, Bhupendra Bahadur; Ashok, Karumuri; Hoteit, Ibrahim. (2022). Aerosol Optical Depth over the Middle East and North Africa region in CMIP6 Models: Climatology, Variability, and Trends. doi:10.21203/rs.3.rs-1903026/v1
[27] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei. (2021). The Brewer-Dobson circulation in CMIP6. doi:10.5194/acp-2021-206
[28] DOI Çetin, I. I.; Yücel, I.; Yılmaz, M. T.; Önol, B. (2024). Historical variability of Coupled Model Intercomparison Project Version 6 (CMIP6)-driven surface winds and global reanalysis data for the Eastern Mediterranean. doi:10.1007/s00704-024-04869-y
[29] DOI Gerber, Edwin. (2021). Comment on acp-2021-206. doi:10.5194/acp-2021-206-rc2
[30] DOI Bhatti, Yusuf; Revell, Laura; Schuddeboom, Alex; McDonald, Adrian; Archibald, Alex; Williams, Jonny; Venugopal, Abhijith; Hardacre, Catherine; Behrens, Erik. (2023). The sensitivity of Southern Ocean atmospheric dimethyl sulfide to modelled sources and emissions. doi:10.5194/egusphere-2023-868
[31] DOI Olson, Roman; Kim, Soong-Ki; Fan, Yanan; An, Soon-Il. (2022). Probabilistic projections of El Niño Southern Oscillation properties accounting for model dependence and skill. doi:10.1038/s41598-022-26513-3
[32] DOI Shukla, Krishna Kumar; Attada, Raju. (2023). CMIP6 models informed summer human thermal discomfort conditions in Indian regional hotspot. doi:10.1038/s41598-023-38602-y
[33] DOI Ngoma, Hamida; Wen, Wang; Ayugi, Brian; Babaousmail, Hassen; Karim, Riwzan; Ongoma, Victor. (2021). Evaluation of the Global Climate Models in CMIP6 over Uganda. doi:10.20944/preprints202012.0782.v1
[34] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014. doi:10.5194/tc-16-1007-2022
[35] DOI Boisvert, Linette N.; Boeke, Robyn C.; Taylor, Patrick C.; Parker, Chelsea L. (2022). Constraining Arctic Climate Projections of Wintertime Warming With Surface Turbulent Flux Observations and Representation of Surface-Atmosphere Coupling. doi:10.3389/feart.2022.765304
[36] DOI Ferreira, Glauber; Reboita, Michelle; Ribeiro, João Gabriel; Carvalho, Vanessa; Santiago, Maria; Silva, Pedro; Baldoni, Thales; Souza, Christie. (2023). Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate. doi:10.21203/rs.3.rs-2983877/v1
[37] DOI Ferreira, Glauber Willian de Souza; Reboita, Michelle Simões; Ribeiro, João Gabriel Martins; de Souza, Christie André. (2023). Assessment of Precipitation and Hydrological Droughts in South America through Statistically Downscaled CMIP6 Projections. doi:10.3390/cli11080166
[38] DOI Vogel, Annika; Alessa, Ghazi; Scheele, Robert; Weber, Lisa; Dubovik, Oleg; North, Peter; Fiedler, Stephanie. (2022). Uncertainty in Aerosol Optical Depth From Modern Aerosol‐Climate Models, Reanalyses, and Satellite Products. doi:10.1029/2021jd035483
[39] DOI Wong, Suki Cheuk-Kiu; McKinley, Galen A; Seager, Richard. (2022). Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1002/essoar.10512730.1
[40] DOI Pasut, Chiara; Tang, Fiona H. M.; Hamilton, David P.; Maggi, Federico. (2020). Carbon, Nitrogen, and Sulfur Elemental Fluxes in the Soil and Exchanges with the Atmosphere in Australian Tropical, Temperate, and Arid Wetlands. doi:10.3390/atmos12010042
[41] DOI Ngoma, Hamida; Wen, Wang; Ayugi, Brian; Babaousmail, Hassen; Karim, Rizwan; Ongoma, Victor. (2021). Evaluation of precipitation simulations in CMIP6 models over Uganda. doi:10.1002/joc.7098
[42] DOI Mohan, Soumya; Ruchith, R. D. (2023). On the simulations of latent heat flux over the Indian Ocean in CMIP6 models. doi:10.1007/s00382-023-06871-y
[43] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-12-1061-2021
[44] DOI Ngoma, Hamida; Ayugi, Brian; Onyutha, Charles; Babaousmail, Hassen; Lim Kam Sian, Kenny T. C.; Iyakaremye, Vedaste; Mumo, Richard; Ongoma, Victor. (2022). Projected changes in rainfall over Uganda based on CMIP6 models. doi:10.1007/s00704-022-04106-4
[45] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[46] DOI Yang, Mingxi. (2023). Comment on egusphere-2023-868. doi:10.5194/egusphere-2023-868-rc2
[47] DOI Rettie, Fasil M.; Gayler, Sebastian; Weber, Tobias K. D.; Tesfaye, Kindie; Streck, Thilo. (2023). High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. doi:10.1038/s41597-023-02337-2
[48] DOI Abalos, Marta. (2021). Reply to CC1. doi:10.5194/acp-2021-206-ac1
[49] DOI Abalos, Marta. (2021). Reply on CC3. doi:10.5194/acp-2021-206-ac3
[50] DOI Abalos, Marta. (2021). Reply on CC2. doi:10.5194/acp-2021-206-ac2
[51] DOI Vaittinada Ayar, Pradeebane; Tjiputra, Jerry; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew. (2022). Contrasting projection of the ENSO-driven CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; flux variability in the Equatorial Pacific under high warming scenario. doi:10.5194/esd-2022-12
[52] DOI AYAR, Pradeebane VAITTINADA; Battisti, David S.; Li, Camille; King, Martin Peter; Vrac, Mathieu; Tjiputra, Jerry Fong. (2023). A regime view of ENSO flavours through clustering in CMIP6 models. doi:10.22541/essoar.167458065.54814300/v2
[53] DOI Aylmer, Jake R.; Ferreira, David; Feltham, Daniel L. (2024). Impact of ocean heat transport on sea ice captured by a simple energy balance model. doi:10.1038/s43247-024-01565-7
[54] DOI Andersson, Tom R.; Hosking, J. Scott; Pérez-Ortiz, María; Paige, Brooks; Elliott, Andrew; Russell, Chris; Law, Stephen; Jones, Daniel C.; Wilkinson, Jeremy; Phillips, Tony; Byrne, James; Tietsche, Steffen; Sarojini, Beena Balan; Blanchard-Wrigglesworth, Eduardo; Aksenov, Yevgeny; Downie, Rod; Shuckburgh, Emily. (2021). Seasonal Arctic sea ice forecasting with probabilistic deep learning. doi:10.1038/s41467-021-25257-4
[55] DOI Lotfirad, Morteza; Adib, Arash; Riyahi, Mohammad Mehdi; Jafarpour, Mohammad. (2022). Evaluating the effects of CMIP6 model uncertainty on extreme flows of the Caspian Hyrcanian forest watersheds by BMA method. doi:10.21203/rs.3.rs-1479406/v1
[56] DOI Hinrichs, Claudia; Hauck, Judith. (2022). Report on skill of CMIP6 models to simulate alkalinity and improved parameterizations for large scale alkalinity distribution. doi:10.3289/oceannets_d4.4
[57] DOI Wong, S. C. K.; McKinley, G. A.; Seager, R. (2022). Equatorial Pacific pCO2 interannual variability in CMIP6 models. doi:10.1029/2022JG007243
[58] DOI Andrade-Velázquez, Mercedes; Montero-Martínez, Martín José. (2023). Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6. doi:10.3390/cli11050111
[59] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard. (2022). Equatorial Pacific pCO 2 Interannual Variability in CMIP6 Models. doi:10.7916/dzbv-zs62
[60] DOI Li, Juan; Zhao, Yuexuan; Wang, Menglu; Tan, Wei; Yin, Jiyuan. (2024). Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6. doi:10.3390/atmos15010139
[61] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982-2014. doi:10.5194/ems2022-447
[62] DOI de Souza Ferreira, Glauber Willian; Reboita, M. S.; Ribeiro, J. G. M.; Carvalho, V. S. B.; Santiago, M. E. V.; Silva, P. L. L. S.; Baldoni, T. C.; de Souza, C. A. (2023). Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate. doi:10.1007/s00382-023-06993-3
[63] DOI Kivimäki, Mika; Batty, G. David; Pentti, Jaana; Suomi, Juuso; Nyberg, Solja T.; Merikanto, Joonas; Nordling, Kalle; Ervasti, Jenni; Suominen, Sakari B.; Partanen, Antti-Ilari; Stenholm, Sari; Käyhkö, Jukka; Vahtera, Jussi. (2023). Climate Change, Summer Temperature, and Heat-Related Mortality in Finland: Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050. doi:10.1289/ehp12080
[64] DOI Azirani, Tayebeh Akbari; Ghorbani, Hossein. (2022). The impact of climate change on Quaternary glaciers of Gharaghom Basin in Iran. doi:10.21203/rs.3.rs-2196055/v1
[65] DOI Ferreira, Glauber Willian de Souza; Reboita, Michelle Simões; Ribeiro, João Gabriel Martins; De Souza, Christie André. (2023). Assessment of Precipitation and Hydrological Droughts in South America through Statistically Downscaled CMIP6 Pro-jections. doi:10.20944/preprints202307.0373.v1
[66] DOI De Keyser, Jan; Hayes, Daniel S.; Marti, Beatrice; Siegfried, Tobias; Seliger, Carina; Schwedhelm, Hannah; Anarbekov, Oyture; Gafurov, Zafar; López Fernández, Raquel M.; Ramos Diez, Ivan; Alapfy, Bertalan; Carey, Justine; Karimov, Bakhtiyor; Karimov, Erkin; Wagner, Beatrice; Habersack, Helmut. (2023). Integrating Open-Source Datasets to Analyze the Transboundary Water–Food–Energy–Climate Nexus in Central Asia. doi:10.3390/w15193482
[67] DOI Robson, Jon; Sutton, Rowan; Menary, Matthew B.; Lai, Michael W. K. (2023). Overview of models used in the study and additional plots from Contrasting internally and externally generated Atlantic multidecadal variability and the role for AMOC in CMIP6 historical simulations. doi:10.6084/m9.figshare.24100547.v1
[68] DOI PAÇAL, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, Mehmet Levent; Wehner, Michael F; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.22541/essoar.168275876.64237989/v1
[69] DOI Vaittinada Ayar, Pradeebane; Battisti, David; Li, Camille; King, Martin; Vrac, Mathieu; Tjiputra, Jerry. (2024). A Regime View of ENSO Flavors Through Clustering in CMIP6 Models. doi:10.5194/egusphere-egu24-12936
[70] DOI DeRepentigny, Patricia; Jahn, Alexandra; Holland, Marika M.; Kay, Jennifer E.; Fasullo, John; Lamarque, Jean-François; Tilmes, Simone; Hannay, Cécile; Mills, Michael J.; Bailey, David A.; Barrett, Andrew P. (2022). Enhanced simulated early 21st century Arctic sea ice loss due to CMIP6 biomass burning emissions. doi:10.1126/sciadv.abo2405
[71] DOI Reboita, Michelle Simões; Ferreira, Glauber Willian de Souza; Ribeiro, João Gabriel Martins; da Rocha, Rosmeri Porfírio; Rao, Vadlamudi Brahmananda. (2023). South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs. doi:10.3390/atmos14091380

Is related to

[1] DOI Akinsanola, Akintomide Afolayan; Ongoma, Victor; Kooperman, Gabriel J. (2021). Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa. doi:10.1016/j.atmosres.2021.105509
[2] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard. (2022). Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1029/2022jg007243
[3] DOI Rivera, Paris. (2022). Evaluation of Historical Simulations of CMIP6 Models for Temperature and Precipitation in Guatemala. doi:10.1007/s41748-022-00333-x
[4] DOI Han, Pengfei; Long, Di; Zhao, Fanyu; Slater, Louise J. (2023). Response of Two Glaciers in Different Climate Settings of the Tibetan Plateau to Climate Change Through Year 2100 Using a Hybrid Modeling Approach. doi:10.1029/2022wr033618
[5] DOI Diamond, Michael S.; Gristey, Jake J.; Kay, Jennifer E.; Feingold, Graham. (2022). Anthropogenic aerosol and cryosphere changes drive Earth’s strong but transient clear-sky hemispheric albedo asymmetry. doi:10.1038/s43247-022-00546-y
[6] DOI Romanovska, Paula; Gleixner, Stephanie; Gornott, Christoph. (2023). Climate data uncertainty for agricultural impact assessments in West Africa. doi:10.1007/s00704-023-04430-3
[7] DOI Annor, Thompson; Ackon, Apphia Tetteh; James, Rachel; Dyer, Ellen; Webb, Thomas; Pokam, Wilfried Mba; Kuete Gouandjo, Giresse; Washington, Richard; Abiodun, Babatunde J. (2023). Heat band, rain band and heat low migration: process-based evaluation of some CMIP6 GCMs over West Africa. doi:10.1007/s00382-023-06930-4
[8] DOI Khalequzzaman, Md.; Masud, Badrul; Islam, Zahidul; Alam, Sarfaraz; Mostafa Ali, Md. (2023). Future Floods in the Brahmaputra River Basin Based on Multi-model Ensemble of CMIP6 Projections. doi:10.1007/978-3-031-21086-0_16
[9] DOI Rajulapati, Chandra Rupa; Papalexiou, Simon Michael. (2023). Precipitation Bias Correction: A Novel Semi‐parametric Quantile Mapping Method. doi:10.1029/2023ea002823
[10] DOI Fiore, Arlene; Hancock, Sarah; Lamarque, Jean-Francois; Correa, Gustavo; Chang, Kai-Lan; Ru, Muye; Cooper, Owen; Gaudel, Audrey; Polvani, Lorenzo; Sauvage, Bastien; Ziemke, Jerald. (2022). Understanding recent tropospheric ozone trends in the context of large internal variability: A new perspective from chemistry-climate model ensembles. doi:10.31223/x5035b
[11] DOI Cutillas-Lozano, Luis Gabino; López, Mario Santa Cruz; Velasco, Antonio Pérez; Andrés-Doménech, Ignacio; Olcina-Cantos, Jorge. (2023). Local-scale regionalisation of climate change effects on rainfall pattern: application to Alicante City (Spain). doi:10.1007/s00704-023-04565-3
[12] DOI Bulgin, Claire E; Mecking, Jennifer V; Harvey, Ben J; Jevrejeva, Svetlana; McCarroll, Niall F; Merchant, Christopher J; Sinha, Bablu. (2023). Dynamic sea-level changes and potential implications for storm surges in the UK: a storylines perspective. doi:10.1088/1748-9326/acc6df
[13] DOI Lotfirad, Morteza; Adib, Arash; Riyahi, Mohammad Mehdi; Jafarpour, Mohammad. (2022). Evaluating the effect of the uncertainty of CMIP6 models on extreme flows of the Caspian Hyrcanian forest watersheds using the BMA method. doi:10.1007/s00477-022-02269-0
[14] DOI Williamson, Tanja N.; Barton, Christopher D. (2020). Hydrologic modeling to examine the influence of the forestry reclamation approach and climate change on mineland hydrology. doi:10.1016/j.scitotenv.2020.140605

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[8] DOI Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; Liao, H.; Unger, N.; Zanis, P. (2023). Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.008
[9] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Parent

WCRP CMIP6 CMIP MRI MRI-ESM2-0
Details

Attached Datasets ( 1381 )

Details for selected entry
[Entry acronym: C6_5243965] [Entry id: 5243965]