WCRP CMIP6 CMIP MRI MRI-ESM2-0

Yukimoto, Seiji et al.

Experiment
Summary
These data include all datasets published for 'CMIP6.CMIP.MRI.MRI-ESM2-0' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MRI-ESM2.0 climate model, released in 2017, includes the following components: aerosol: MASINGAR mk2r4 (TL95; 192 x 96 longitude/latitude; 80 levels; top level 0.01 hPa), atmos: MRI-AGCM3.5 (TL159; 320 x 160 longitude/latitude; 80 levels; top level 0.01 hPa), atmosChem: MRI-CCM2.1 (T42; 128 x 64 longitude/latitude; 80 levels; top level 0.01 hPa), land: HAL 1.0, ocean: MRI.COM4.4 (tripolar primarily 0.5 deg latitude/1 deg longitude with meridional refinement down to 0.3 deg within 10 degrees north and south of the equator; 360 x 364 longitude/latitude; 61 levels; top grid cell 0-2 m), ocnBgchem: MRI.COM4.4, seaIce: MRI.COM4.4. The model was run by the Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan (MRI) in native nominal resolutions: aerosol: 250 km, atmos: 100 km, atmosChem: 250 km, land: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Dr. Seiji Yukimoto (
 yukimoto@nullmri-jma.go.jp
)

Dr. Tsuyoshi Koshiro (
 tkoshiro@nullmri-jma.go.jp
0000-0003-2971-7446)

Dr. Hideaki Kawai (
 h-kawai@nullmri-jma.go.jp
)

Dr. Naga Oshima (
 oshima@nullmri-jma.go.jp
0000-0002-8451-2411)

Dr. Kohei Yoshida (
 kyoshida@nullmri-jma.go.jp
)

Dr. Shogo Urakawa (
 surakawa@nullmri-jma.go.jp
)

Hiroyuki Tsujino (
 htsujino@nullmri-jma.go.jp
0000-0003-3336-0275)

Makoto Deushi (
 mdeushi@nullmri-jma.go.jp
0000-0002-0373-3918)

Taichu Tanaka (
 yatanaka@nullmri-jma.go.jp
)

Masahiro Hosaka (
 mhosaka@nullmri-jma.go.jp
)

Hiromasa Yoshimura (
 hyoshimu@nullmri-jma.go.jp
)

Eiki Shindo (
 eishindo@nullmri-jma.go.jp
)

Ryo Mizuta (
 rmizuta@nullmri-jma.go.jp
)

Dr. Masayoshi Ishii (
 maish@nullmri-jma.go.jp
)

Yukimasa Adachi (
 yadachi@nullmri-jma.go.jp
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-16 to 2550-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
29.33 TiB (32245934389882 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-06-12
Cite as
Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa (2023). MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_5243961

BibTeX RIS
Description
as consistent as the model(s) MRI-ESM2-0
Description
All TQA checks were passed for WCRP CMIP6 CMIP MRI MRI-ESM2-0.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-03-18
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Is part of

[1] DOI Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa. (2019). MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP. doi:10.22033/ESGF/CMIP6.621

Is referenced by

[1] DOI Wang, Meirong; Wang, Jun; Chen, Deliang; Duan, Anmin; Liu, Yimin; Zhou, Shunwu; Guo, Dong; Wang, Hengmao; Ju, Weimin. (2020). Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. doi:10.1088/1748-9326/ab57a3
[2] DOI Burke, Eleanor J.; Zhang, Yu; Krinner, Gerhard. (2020). Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. doi:10.5194/tc-14-3155-2020
[3] DOI Ayugi, Brian; Zhihong, Jiang; Zhu, Huanhuan; Ngoma, Hamida; Babaousmail, Hassen; Rizwan, Karim; Dike, Victor. (2021). Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. doi:10.1002/joc.7207
[4] DOI Faye, Aissatou; Akinsanola, Akintomide Afolayan. (2021). Evaluation of extreme precipitation indices over West Africa in CMIP6 models. doi:10.1007/s00382-021-05942-2
[5] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B. (2020). Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9
[6] DOI Zhang, Kequan; Duan, Jiakang; Zhao, Siyi; Zhang, Jiankai; Keeble, James; Liu, Hongwen. (2021). Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. doi:10.1007/s00376-021-0442-2
[7] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal. (2022). Should multivariate bias corrections of climate simulations account for changes of rank correlation over time?. doi:10.1002/essoar.10510318.1
[8] DOI Cai, Wenju; Yang, Kai; Wu, Lixin; Huang, Gang; Santoso, Agus; Ng, Benjamin; Wang, Guojian; Yamagata, Toshio. (2020). Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. doi:10.1038/s41558-020-00943-1
[9] DOI Liu, Jingchen; Guan, Xiaodan; Gao, Zhaokui; Huang, Xiaoqian; Ma, Jieru; He, Yongli; Xie, Tiejun. (2021). Inter-decadal variability of the heat source over the Tibetan Plateau. doi:10.1007/s00382-021-05929-z
[10] DOI Jung, Christopher; Schindler, Dirk. (2022). Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor. doi:10.1038/s41560-022-01056-z
[11] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal. (2022). Changes in temperature–precipitation correlations over Europe: are climate models reliable?. doi:10.1007/s00382-022-06436-5
[12] DOI Balting, Daniel F.; AghaKouchak, Amir; Lohmann, Gerrit; Ionita, Monica. (2021). Northern Hemisphere drought risk in a warming climate. doi:10.1038/s41612-021-00218-2
[13] DOI Yiou, Pascal; Faranda, Davide; Thao, Soulivanh; Vrac, Mathieu. (2021). Projected Changes in the Atmospheric Dynamics of Climate Extremes in France. doi:10.3390/atmos12111440
[14] DOI Tian, Lei; Tao, Yu; Fu, Wenxue; Li, Tao; Ren, Fang; Li, Mingyang. (2022). Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. doi:10.3390/rs14102330
[15] DOI Carlson, Kimberly M.; Mora, Camilo; Xu, Jinwen; Setter, Renee O.; Harangody, Michelle; Franklin, Erik C.; Kantar, Michael B.; Lucas, Matthew; Menzo, Zachary M.; Spirandelli, Daniele; Schanzenbach, David; Courtlandt Warr, C.; Wong, Amanda E.; Businger, Steven. (2022). Global rainbow distribution under current and future climates. doi:10.1016/j.gloenvcha.2022.102604
[16] DOI Liu, Meng; Yang, Linqing. (2022). Northward expansion of fire-adaptative vegetation in future warming. doi:10.1088/1748-9326/ac417d
[17] DOI Yang, Shuyu; Yang, Dawen; Zhao, Baoxu; Ma, Teng; Lu, Weiwei; Santisirisomboon, Jerasorn. (2022). Future Changes in High and Low Flows under the Impacts of Climate and Land Use Changes in the Jiulong River Basin of Southeast China. doi:10.3390/atmos13020150
[18] DOI Rashid, Haroon; Yang, Kaijie; Zeng, Aicong; Ju, Song; Rashid, Abdur; Guo, Futao; Lan, Siren. (2021). Predicting the Hydrological Impacts of Future Climate Change in a Humid-Subtropical Watershed. doi:10.3390/atmos13010012
[19] DOI Cook, B. I.; Mankin, J. S.; Marvel, K.; Williams, A. P.; Smerdon, J. E.; Anchukaitis, K. J. (2020). Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios. doi:10.1029/2019ef001461
[20] DOI Allan, Richard P.; Barlow, Mathew; Byrne, Michael P.; Cherchi, Annalisa; Douville, Hervé; Fowler, Hayley J.; Gan, Thian Y.; Pendergrass, Angeline G.; Rosenfeld, Daniel; Swann, Abigail L. S.; Wilcox, Laura J.; Zolina, Olga. (2020). Advances in understanding large‐scale responses of the water cycle to climate change. doi:10.1111/nyas.14337
[21] DOI Cotterill, Daniel F.; Pope, James O.; Stott, Peter A. (2022). Future Extension Of The UK Summer And Its Impact On Autumn Precipitation. doi:10.21203/rs.3.rs-1427756/v1
[22] DOI Jönsson, A., Bender, F. A. (2022). Persistence and Variability of Earth`s Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. doi:10.1175/jcli-d-20-0970.1
[23] DOI Rivera, Paris. (2022). Evaluation of Historical Simulations of CMIP6 Models for Temperature and Precipitation in Guatemala. doi:10.1007/s41748-022-00333-x
[24] DOI AYUGI, Brian; Zhidong, Jiang; Zhu, Huanhuan; Ngoma, Hamida; Babaousmail, Hassen; Rizwan, Karim; Dike, Victor. (2021). Comparison of CMIP6 and CMIP5 Models in Simulating Mean and Extreme Precipitation over East Africa. doi:10.20944/preprints202102.0111.v1
[25] DOI Lea, James M.; Fitt, Robert N. L.; Brough, Stephen; Carr, Georgia; Dick, Jonathan; Jones, Natasha; Webster, Richard J. (2024). Making climate reanalysis and CMIP6 data processing easy: two “point-and-click” cloud based user interfaces for environmental and ecological studies. doi:10.3389/fenvs.2024.1294446
[26] DOI Han, Pengfei; Long, Di; Zhao, Fanyu; Slater, Louise J. (2023). Response of Two Glaciers in Different Climate Settings of the Tibetan Plateau to Climate Change Through Year 2100 Using a Hybrid Modeling Approach. doi:10.1029/2022wr033618
[27] DOI Shang, Lin; Luo, Jiali; Wang, Chunxiao. (2021). Ozone Variation Trends under Different CMIP6 Scenarios. doi:10.3390/atmos12010112
[28] DOI Azirani, Tayebeh Akbari; Ghorbani, Hossein. (2023). The impact of climate change on Quaternary glaciers of Gharaghom Basin in Iran. doi:10.1007/s00704-023-04701-z
[29] DOI Kunchala, Ravi Kumar; Attada, Raju; Karumuri, Rama Krishna; Seelanki, Vivek; Singh, Bhupendra Bahadur; Ashok, Karumuri; Hoteit, Ibrahim. (2022). Aerosol Optical Depth over the Middle East and North Africa region in CMIP6 Models: Climatology, Variability, and Trends. doi:10.21203/rs.3.rs-1903026/v1
[30] DOI Gerber, Edwin. (2021). Comment on acp-2021-206. doi:10.5194/acp-2021-206-rc2
[31] DOI Bhatti, Yusuf; Revell, Laura; Schuddeboom, Alex; McDonald, Adrian; Archibald, Alex; Williams, Jonny; Venugopal, Abhijith; Hardacre, Catherine; Behrens, Erik. (2023). The sensitivity of Southern Ocean atmospheric dimethyl sulfide to modelled sources and emissions. doi:10.5194/egusphere-2023-868
[32] DOI Papalexiou, Simon Michael; Rajulapati, Chandra Rupa; Andreadis, Konstantinos M.; Foufoula‐Georgiou, Efi; Clark, Martyn P.; Trenberth, Kevin E. (2021). Probabilistic Evaluation of Drought in CMIP6 Simulations. doi:10.1029/2021ef002150
[33] DOI Correa, Wesley de Souza Campos; Soares, Wagner Rodrigues; Aylas, Georgynio Yossimar Rosales; Reis Junior, Neyval Costa; Marengo, José Antonio; Chou, Sin Chan; Nobre, Carlos. (2023). Avaliação das simulações de temperatura e precipitação de um subconjunto de modelos do CMIP6 para o Brasil. doi:10.14295/derb.v43.774
[34] DOI Shukla, Krishna Kumar; Attada, Raju. (2023). CMIP6 models informed summer human thermal discomfort conditions in Indian regional hotspot. doi:10.1038/s41598-023-38602-y
[35] DOI Ngoma, Hamida; Wen, Wang; Ayugi, Brian; Babaousmail, Hassen; Karim, Riwzan; Ongoma, Victor. (2021). Evaluation of the Global Climate Models in CMIP6 over Uganda. doi:10.20944/preprints202012.0782.v1
[36] DOI Annor, Thompson; Ackon, Apphia Tetteh; James, Rachel; Dyer, Ellen; Webb, Thomas; Pokam, Wilfried Mba; Kuete Gouandjo, Giresse; Washington, Richard; Abiodun, Babatunde J. (2023). Heat band, rain band and heat low migration: process-based evaluation of some CMIP6 GCMs over West Africa. doi:10.1007/s00382-023-06930-4
[37] DOI Cook, B. I.; Mankin, J. S.; Marvel, K.; Williams, A. P.; Smerdon, J. E.; Anchukaitis, K. J. (2020). Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. doi:10.1029/2019EF001461
[38] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014. doi:10.5194/tc-16-1007-2022
[39] DOI Vogel, Annika; Alessa, Ghazi; Scheele, Robert; Weber, Lisa; Dubovik, Oleg; North, Peter; Fiedler, Stephanie. (2022). Uncertainty in Aerosol Optical Depth From Modern Aerosol‐Climate Models, Reanalyses, and Satellite Products. doi:10.1029/2021jd035483
[40] DOI Jönsson, Aiden. (2022). Reply on RC1. doi:10.5194/egusphere-2022-811-ac1
[41] DOI Jönsson, Aiden. (2022). Reply on RC2. doi:10.5194/egusphere-2022-811-ac2
[42] DOI Wong, Suki Cheuk-Kiu; McKinley, Galen A; Seager, Richard. (2022). Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1002/essoar.10512730.1
[43] DOI Wang, Rongyao; Zhao, Junsan; Lin, Yilin; Chen, Guoping; Cao, Qing; Feng, Yixiang. (2022). Land Change Simulation and Forest Carbon Storage of Central Yunnan Urban Agglomeration, China Based on SSP-RCP Scenarios. doi:10.3390/f13122030
[44] DOI Olusegun, Christiana; Ojo, Olusola; Olusola, Adeyemi; Ogunjo, Samuel. (2023). Solar radiation variability across Nigeria’s climatic zones: a validation and projection study with CORDEX, CMIP5, and CMIP6 models. doi:10.1007/s40808-023-01848-6
[45] DOI Ngoma, Hamida; Wen, Wang; Ayugi, Brian; Babaousmail, Hassen; Karim, Rizwan; Ongoma, Victor. (2021). Evaluation of precipitation simulations in CMIP6 models over Uganda. doi:10.1002/joc.7098
[46] DOI Mohan, Soumya; Ruchith, R. D. (2023). On the simulations of latent heat flux over the Indian Ocean in CMIP6 models. doi:10.1007/s00382-023-06871-y
[47] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[48] DOI Yang, Mingxi. (2023). Comment on egusphere-2023-868. doi:10.5194/egusphere-2023-868-rc2
[49] DOI Rettie, Fasil M.; Gayler, Sebastian; Weber, Tobias K. D.; Tesfaye, Kindie; Streck, Thilo. (2023). High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. doi:10.1038/s41597-023-02337-2
[50] DOI Abalos, Marta. (2021). Reply to CC1. doi:10.5194/acp-2021-206-ac1
[51] DOI Vrac, M.; Thao, S.; Yiou, P. (2022). Should Multivariate Bias Corrections of Climate Simulations Account for Changes of Rank Correlation Over Time?. doi:10.1029/2022jd036562
[52] DOI Liu, Zhu; Zhang, Guoping; Ding, Jin; Xiao, Xiong. (2022). Biases of the Mean and Shape Properties in CMIP6 Extreme Precipitation Over Central Asia. doi:10.3389/feart.2022.918337
[53] DOI Vaittinada Ayar, Pradeebane; Tjiputra, Jerry; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew. (2022). Contrasting projection of the ENSO-driven CO<sub>2</sub> flux variability in the Equatorial Pacific under high warming scenario. doi:10.5194/esd-2022-12
[54] DOI AYAR, Pradeebane VAITTINADA; Battisti, David S.; Li, Camille; King, Martin Peter; Vrac, Mathieu; Tjiputra, Jerry Fong. (2023). A regime view of ENSO flavours through clustering in CMIP6 models. doi:10.22541/essoar.167458065.54814300/v2
[55] DOI Aylmer, Jake R.; Ferreira, David; Feltham, Daniel L. (2024). Impact of ocean heat transport on sea ice captured by a simple energy balance model. doi:10.1038/s43247-024-01565-7
[56] DOI Andersson, Tom R.; Hosking, J. Scott; Pérez-Ortiz, María; Paige, Brooks; Elliott, Andrew; Russell, Chris; Law, Stephen; Jones, Daniel C.; Wilkinson, Jeremy; Phillips, Tony; Byrne, James; Tietsche, Steffen; Sarojini, Beena Balan; Blanchard-Wrigglesworth, Eduardo; Aksenov, Yevgeny; Downie, Rod; Shuckburgh, Emily. (2021). Seasonal Arctic sea ice forecasting with probabilistic deep learning. doi:10.1038/s41467-021-25257-4
[57] DOI Lotfirad, Morteza; Adib, Arash; Riyahi, Mohammad Mehdi; Jafarpour, Mohammad. (2022). Evaluating the effects of CMIP6 model uncertainty on extreme flows of the Caspian Hyrcanian forest watersheds by BMA method. doi:10.21203/rs.3.rs-1479406/v1
[58] DOI Lotfirad, Morteza; Adib, Arash; Riyahi, Mohammad Mehdi; Jafarpour, Mohammad. (2022). Evaluating the effect of the uncertainty of CMIP6 models on extreme flows of the Caspian Hyrcanian forest watersheds using the BMA method. doi:10.1007/s00477-022-02269-0
[59] DOI Wong, S. C. K.; McKinley, G. A.; Seager, R. (2022). Equatorial Pacific pCO2 interannual variability in CMIP6 models. doi:10.1029/2022JG007243
[60] DOI Andrade-Velázquez, Mercedes; Montero-Martínez, Martín José. (2023). Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6. doi:10.3390/cli11050111
[61] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard. (2022). Equatorial Pacific pCO 2 Interannual Variability in CMIP6 Models. doi:10.7916/dzbv-zs62
[62] DOI Cook, B. I.; Mankin, J. S.; Marvel, K.; Williams, A. P.; Smerdon, J. E.; Anchukaitis, K. J. (2022). Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. doi:10.7916/k1h7-mm35
[63] DOI Rusli, Steven Reinaldo; Bense, Victor F.; Mustafa, Syed M. T.; Weerts, Albrecht H. (2024). The impact of future climate projections and anthropogenic activities on basin-scale groundwater availability. doi:10.5194/hess-2024-26
[64] DOI Smith, Christopher. (2024). Comment on egusphere-2023-2427. doi:10.5194/egusphere-2023-2427-rc1
[65] DOI Kalisoras, Alkiviadis. (2024). Reply on RC1. doi:10.5194/egusphere-2023-2571-ac2
[66] DOI Komelo, Crépin K.; Fotso-Nguemo, Thierry C.; Ngavom, Zakariahou; Dessacka, Abdon K.; Taguela, Thierry N.; Yepdo, Zéphirin D.; Nghonda, Jean P.; Diedhiou, Arona; Monkam, David; Tchawoua, Clément. (2024). Evaluation of extreme precipitation events as simulated by CMIP6 models over Central Africa: Spatial patterns. doi:10.1007/s00704-024-05198-w
[67] DOI Sun, Zhe; Archibald, Alexander. (2021). Multi-stage Ensemble-learning-based Model Fusion for Surface Ozone Simulations: A Focus on CMIP6 Models. doi:10.1002/essoar.10507571.1
[68] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982-2014. doi:10.5194/ems2022-447
[69] DOI Vrac, Mathieu; Allard, Denis; Mariéthoz, Grégoire; Thao, Soulivanh; Schmutz, Lucas. (2024). Distribution-based pooling for combination and multi-model bias correction of climate simulations. doi:10.5194/esd-15-735-2024
[70] DOI Semenov, Mikhail A.; Senapati, Nimai; Coleman, Kevin; Collins, Adrian L. (2024). A dataset of CMIP6-based climate scenarios for climate change impact assessment in Great Britain. doi:10.1016/j.dib.2024.110709
[71] DOI Kalisoras, Alkiviadis; Georgoulias, Aristeidis K.; Akritidis, Dimitris; Allen, Robert J.; Naik, Vaishali; Kuo, Chaincy; Szopa, Sophie; Nabat, Pierre; Olivié, Dirk; van Noije, Twan; Le Sager, Philippe; Neubauer, David; Oshima, Naga; Mulcahy, Jane; Horowitz, Larry W.; Zanis, Prodromos. (2024). Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models. doi:10.5194/acp-24-7837-2024
[72] DOI Kivimäki, Mika; Batty, G. David; Pentti, Jaana; Suomi, Juuso; Nyberg, Solja T.; Merikanto, Joonas; Nordling, Kalle; Ervasti, Jenni; Suominen, Sakari B.; Partanen, Antti-Ilari; Stenholm, Sari; Käyhkö, Jukka; Vahtera, Jussi. (2023). Climate Change, Summer Temperature, and Heat-Related Mortality in Finland: Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050. doi:10.1289/ehp12080
[73] DOI Azirani, Tayebeh Akbari; Ghorbani, Hossein. (2022). The impact of climate change on Quaternary glaciers of Gharaghom Basin in Iran. doi:10.21203/rs.3.rs-2196055/v1
[74] DOI Shafeeque, Muhammad; Bibi, Amna. (2023). Assessing the impact of future climate scenarios on crop water requirements and agricultural water supply across different climatic zones of Pakistan. doi:10.3389/feart.2023.1283171
[75] DOI Zhou, Putian; Lu, Zhengyao; Keskinen, Jukka-Pekka; Zhang, Qiong; Lento, Juha; Bian, Jianpu; van Noije, Twan; Le Sager, Philippe; Kerminen, Veli-Matti; Kulmala, Markku; Boy, Michael; Makkonen, Risto. (2023). Simulating dust emissions and secondary organic aerosol formation over northern Africa during the mid-Holocene Green Sahara period. doi:10.5194/cp-19-2445-2023
[76] DOI De Keyser, Jan; Hayes, Daniel S.; Marti, Beatrice; Siegfried, Tobias; Seliger, Carina; Schwedhelm, Hannah; Anarbekov, Oyture; Gafurov, Zafar; López Fernández, Raquel M.; Ramos Diez, Ivan; Alapfy, Bertalan; Carey, Justine; Karimov, Bakhtiyor; Karimov, Erkin; Wagner, Beatrice; Habersack, Helmut. (2023). Integrating Open-Source Datasets to Analyze the Transboundary Water–Food–Energy–Climate Nexus in Central Asia. doi:10.3390/w15193482
[77] DOI PAÇAL, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, Mehmet Levent; Wehner, Michael F; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.22541/essoar.168275876.64237989/v1
[78] DOI Vaittinada Ayar, Pradeebane; Battisti, David; Li, Camille; King, Martin; Vrac, Mathieu; Tjiputra, Jerry. (2024). A Regime View of ENSO Flavors Through Clustering in CMIP6 Models. doi:10.5194/egusphere-egu24-12936
[79] DOI DeRepentigny, Patricia; Jahn, Alexandra; Holland, Marika M.; Kay, Jennifer E.; Fasullo, John; Lamarque, Jean-François; Tilmes, Simone; Hannay, Cécile; Mills, Michael J.; Bailey, David A.; Barrett, Andrew P. (2022). Enhanced simulated early 21st century Arctic sea ice loss due to CMIP6 biomass burning emissions. doi:10.1126/sciadv.abo2405

References

[1] DOI YUKIMOTO, Seiji; KAWAI, Hideaki; KOSHIRO, Tsuyoshi; OSHIMA, Naga; YOSHIDA, Kohei; URAKAWA, Shogo; TSUJINO, Hiroyuki; DEUSHI, Makoto; TANAKA, Taichu; HOSAKA, Masahiro; YABU, Shokichi; YOSHIMURA, Hiromasa; SHINDO, Eiki; MIZUTA, Ryo; OBATA, Atsushi; ADACHI, Yukimasa; ISHII, Masayoshi. (2019). The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. doi:10.2151/jmsj.2019-051
[2] DOI Kawai, Hideaki; Yukimoto, Seiji; Koshiro, Tsuyoshi; Oshima, Naga; Tanaka, Taichu; Yoshimura, Hiromasa; Nagasawa, Ryoji. (2019). Significant improvement of cloud representation in the global climate model MRI-ESM2. doi:10.5194/gmd-12-2875-2019
[3] DOI Urakawa, L. Shogo; Tsujino, Hiroyuki; Nakano, Hideyuki; Sakamoto, Kei; Yamanaka, Goro; Toyoda, Takahiro. (2020). The sensitivity of a depth-coordinate model to diapycnal mixing induced by practical implementations of the isopycnal tracer diffusion scheme. doi:10.1016/j.ocemod.2020.101693
[4] DOI Kawai, Hideaki; Yukimoto, Seiji; Koshiro, Tsuyoshi; Oshima, Naga; Tanaka, Taichu; Yoshimura, Hiromasa; Nagasawa, Ryoji. (2019). Significant Improvement of Cloud Representation in Global Climate Model MRI-ESM2. doi:10.5194/gmd-2019-23

Is related to

[1] DOI Oshima, Naga; Yukimoto, Seiji; Deushi, Makoto; Koshiro, Tsuyoshi; Kawai, Hideaki; Tanaka, Taichu Y.; Yoshida, Kohei. (2020). Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0. doi:10.1186/s40645-020-00348-w
[2] DOI Guglielmo, Magda; Zambonini, Dario; Porta, Giovanni; Malik, Arunima; Tang, Fiona.H.M.; Maggi, Federico. (2020). Time- and depth-resolved mechanistic assessment of water stress in Australian ecosystems under the CMIP6 scenarios. doi:10.1016/j.advwatres.2020.103837
[3] DOI Lange, Stefan; Quesada-Chacón, Dánnell; Büchner, Matthias. (2023). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.2
[4] DOI Lou, ‪Jiale; Newman, Matthew; Hoell, Andrew. (2023). Multi-decadal variation of ENSO forecast skill since the late 1800s. doi:10.21203/rs.3.rs-2544766/v1
[5] DOI Fallah, Bijan; Russo, Emmanuele; Menz, Christoph; Hoffmann, Peter; Didovets, Iulii; Hattermann, Fred F. (2023). Anthropogenic influence on extreme temperature and precipitation in Central Asia. doi:10.1038/s41598-023-33921-6
[6] DOI Bjarke, Nels; Barsugli, Joseph; Livneh, Ben. (2023). Ensemble of CMIP6 derived reference and potential evapotranspiration with radiative and advective components. doi:10.1038/s41597-023-02290-0
[7] DOI Cotterill, Daniel F.; Pope, James O.; Stott, Peter A. (2022). Future extension of the UK summer and its impact on autumn precipitation. doi:10.1007/s00382-022-06403-0
[8] DOI Nastula, Jolanta; Śliwińska, Justyna; Kur, Tomasz; Wińska, Małgorzata; Partyka, Aleksander. (2022). Preliminary study on hydrological angular momentum determined from CMIP6 historical simulations. doi:10.1186/s40623-022-01636-z
[9] DOI Cao, Ruyin; Ling, Xiaofang; Liu, Licong; Wang, Weiyi; Li, Luchun; Shen, Miaogen. (2023). Remotely Sensed Vegetation Green-Up Onset Date on the Tibetan Plateau: Simulations and Future Predictions. doi:10.1109/jstars.2023.3310617
[10] DOI Lange, Stefan; Quesada-Chacón, Dánnell; Büchner, Matthias. (2023). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.3

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[8] DOI Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; Liao, H.; Unger, N.; Zanis, P. (2023). Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.008
[9] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Is source of

[1] DOI Lange, Stefan; Büchner, Matthias. (2021). ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.842396.1
[2] DOI Lange, Stefan; Büchner, Matthias. (2021). ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.842396
[3] DOI Lange, Stefan; Büchner, Matthias. (2022). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.1
[4] DOI Lange, Stefan; Büchner, Matthias. (2022). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124

Attached Dataset Groups ( 7 )

Search on group level...Details for selected entry
[Entry acronym: C6_5243961] [Entry id: 5243961]