WCRP CMIP6 CMIP MIROC MIROC6 historical

Tatebe, Hiroaki; Watanabe, Masahiro

Dataset Group
Summary
These data include all datasets published for 'CMIP6.CMIP.MIROC.MIROC6.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Dr. Hiroaki Tatebe (
 tatebe@nulljamstec.go.jp
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-16 to 2015-01-01 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
17.98 TiB (19764089257834 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-06-12
Cite as
Tatebe, Hiroaki; Watanabe, Masahiro (2023). MIROC MIROC6 model output prepared for CMIP6 CMIP historical. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_5208750

BibTeX RIS
Description
as consistent as the model(s) MIROC6
Description
All TQA checks were passed for WCRP CMIP6 CMIP MIROC MIROC6 historical.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-03-18
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Cites

[1] DOI Durack, Paul J.; Taylor, Karl E. (2017). PCMDI AMIP SST and sea-ice boundary conditions version 1.1.2. doi:10.22033/ESGF/input4MIPs.1161
[2] DOI Matthes, Katja; Funke, Bernd; Kruschke, Tim; Wahl, Sebastian. (2017). input4MIPs.SOLARIS-HEPPA.solar.CMIP.SOLARIS-HEPPA-3-2. doi:10.22033/ESGF/input4MIPs.1122
[3] DOI van Marle, Margreet J.E.; Kloster, Silvia; Magi, Brian I.; Marlon, Jennifer R.; Daniau, Anne-Laure; Field, Robert D.; Arneth, Almut; Forrest, Matthew; Hantson, Stijn; Kehrwald, Natalie M.; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stéphane; Yue, Chao; Kaiser, Johannes W.; van der Werf, Guido R. (2016). Biomass Burning emissions for CMIP6 (v1.2). doi:10.22033/ESGF/input4MIPs.1117
[4] DOI Hurtt, George; Chini, Louise; Sahajpal, Ritvik; Frolking, Steve; Bodirsky, Benjamin Leon; Calvin, Kate; Doelman, Jonathan; Fisk, Justin; Fujimori, Shinichiro; Goldewijk, Kees Klein; Hasegawa, Tomoko; Havlik, Petr; Heinimann, Andreas; Humpenöder, Florian; Jungclaus, Johann; Kaplan, Jed; Krisztin, Tamás; Lawrence, David; Lawrence, Peter; Mertz, Ole; Pongratz, Julia; Popp, Alexander; Riahi, Keywan; Shevliakova, Elena; Stehfest, Elke; Thornton, Peter; van Vuuren, Detlef; Zhang, Xin. (2017). Harmonization of global land use scenarios (LUH2): Historical v2.1h 850 - 2015. doi:10.22033/ESGF/input4MIPs.1127
[5] DOI Hoesly, Rachel; Smith, Steven; Feng, Leyang; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pitkanen, Tyler; Seibert, Jonathan J.; Vu, Linh; Andres, Robert J.; Bolt, Ryan M.; Bond, Tami C.; Dawidowski, Laura; Kholod, Nazar; Kurokawa, Jun-ichi; Li, Meng; Liu, Liang; Lu, Zifeng; Moura, Maria Cecilia P.; O'Rourke, Patrick R.; Zhang, Qiang. (2017). Historical Emissions (1750 - 2014) - CEDS - v2017-05-18. doi:10.22033/ESGF/input4MIPs.1241
[6] DOI Kennedy, John; Titchner, Holly; Rayner, Nick; Roberts, Malcolm. (2017). input4MIPs.MOHC.SSTsAndSeaIce.HighResMIP.MOHC-HadISST-2-2-0-0-0. doi:10.22033/ESGF/input4MIPs.1221
[7] DOI Meinshausen, Malte; Vogel, Elisabeth. (2016). input4MIPs.UoM.GHGConcentrations.CMIP.UoM-CMIP-1-2-0. doi:10.22033/ESGF/input4MIPs.1118

Is part of

[1] DOI Tatebe, Hiroaki; Watanabe, Masahiro. (2018). MIROC MIROC6 model output prepared for CMIP6 CMIP historical. doi:10.22033/ESGF/CMIP6.5603

Is referenced by

[1] DOI Burke, Eleanor J.; Zhang, Yu; Krinner, Gerhard. (2020). Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. doi:10.5194/tc-14-3155-2020
[2] DOI Ono, Jun; Watanabe, Masahiro; Komuro, Yoshiki; Tatebe, Hiroaki; Abe, Manabu. (2022). Enhanced Arctic warming amplification revealed in a low-emission scenario. doi:10.1038/s43247-022-00354-4
[3] DOI Emmenegger, Todd; Kuo, Yi-Hung; Xie, Shaocheng; Zhang, Chengzhu; Tao, Cheng; Neelin, J. David. (2022). Evaluating Tropical Precipitation Relations in CMIP6 Models with ARM Data. doi:10.1175/jcli-d-21-0386.1
[4] DOI Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Jian. (2021). Snow Depth Trends from CMIP6 Models Conflict with Observational Evidence. doi:10.1175/jcli-d-21-0177.1
[5] DOI Cai, Wenju; Yang, Kai; Wu, Lixin; Huang, Gang; Santoso, Agus; Ng, Benjamin; Wang, Guojian; Yamagata, Toshio. (2020). Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. doi:10.1038/s41558-020-00943-1
[6] DOI Ayodele, Adigun Paul; Precious, Ebiendele Eromosele; Brhane, Ermias Sisay; Seun, Adawa Ifeoluwa. (2022). CMIP6 multi-model evaluation of summer extreme precipitation over East Asia. doi:10.1007/s40808-022-01433-3
[7] DOI Watanabe, Masahiro; Dufresne, Jean-Louis; Kosaka, Yu; Mauritsen, Thorsten; Tatebe, Hiroaki. (2020). Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. doi:10.1038/s41558-020-00933-3
[8] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43
[9] DOI Langan, Joseph A.; Bell, Richard J.; Collie, Jeremy S. (2022). Taking stock: Is recovery of a depleted population possible in a changing climate?. doi:10.1111/fog.12599
[10] DOI Dahlke, Flemming T.; Wohlrab, Sylke; Butzin, Martin; Pörtner, Hans-Otto. (2020). Thermal bottlenecks in the life cycle define climate vulnerability of fish. doi:10.1126/science.aaz3658
[11] DOI Popova, Kristina V.; Baturina, Natalya S.; Molodtsov, Vladimir V.; Yefremova, Oxana V.; Zharkov, Vasily D.; Sergeev, Michael G. (2022). The Handsome Cross Grasshopper Oedaleus decorus (Germar, 1825) (Orthoptera: Acrididae) as a Neglected Pest in the South-Eastern Part of West Siberian Plain. doi:10.3390/insects13010049
[12] DOI Akinsanola, Akintomide Afolayan; Ogunjobi, Kehinde O; Abolude, Akintayo T; Salack, Seyni. (2021). Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. doi:10.1088/1748-9326/abed7a
[13] DOI Kataoka, Takahito; Tatebe, Hiroaki; Koyama, Hiroshi; Mochizuki, Takashi; Ogochi, Koji; Naoe, Hiroaki; Imada, Yukiko; Shiogama, Hideo; Kimoto, Masahide; Watanabe, Masahiro. (2020). Seasonal to Decadal Predictions With MIROC6: Description and Basic Evaluation. doi:10.1029/2019ms002035
[14] DOI Jönsson, A., Bender, F. A. (2022). Persistence and Variability of Earth`s Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. doi:10.1175/jcli-d-20-0970.1
[15] DOI Kumar, Amit; Singh, Raghvender Pratap; Dubey, Swatantra Kumar; Gaurav, Kumar. (2022). Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change. doi:10.3390/agriculture12122005
[16] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei. (2021). The Brewer–Dobson circulation in CMIP6. doi:10.5194/acp-21-13571-2021
[17] DOI Kunchala, Ravi Kumar; Attada, Raju; Karumuri, Rama Krishna; Seelanki, Vivek; Singh, Bhupendra Bahadur; Ashok, Karumuri; Hoteit, Ibrahim. (2022). Aerosol Optical Depth over the Middle East and North Africa region in CMIP6 Models: Climatology, Variability, and Trends. doi:10.21203/rs.3.rs-1903026/v1
[18] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei. (2021). The Brewer-Dobson circulation in CMIP6. doi:10.5194/acp-2021-206
[19] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan. (2022). Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701
[20] DOI Gerber, Edwin. (2021). Comment on acp-2021-206. doi:10.5194/acp-2021-206-rc2
[21] DOI Papalexiou, Simon Michael; Rajulapati, Chandra Rupa; Andreadis, Konstantinos M.; Foufoula‐Georgiou, Efi; Clark, Martyn P.; Trenberth, Kevin E. (2021). Probabilistic Evaluation of Drought in CMIP6 Simulations. doi:10.1029/2021ef002150
[22] DOI Bagnell, A.; DeVries, T. (2021). 20th century cooling of the deep ocean contributed to delayed acceleration of Earth’s energy imbalance. doi:10.1038/s41467-021-24472-3
[23] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014. doi:10.5194/tc-16-1007-2022
[24] DOI Duffy, Margaret L; O'Gorman, Paul A. (2022). Intermodel spread in Walker circulation responses linked to spread in moist stability and radiation responses. doi:10.22541/essoar.167078790.00035564/v1
[25] DOI Ferreira, Glauber Willian de Souza; Reboita, Michelle Simões; Ribeiro, João Gabriel Martins; de Souza, Christie André. (2023). Assessment of Precipitation and Hydrological Droughts in South America through Statistically Downscaled CMIP6 Projections. doi:10.3390/cli11080166
[26] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[27] DOI Rettie, Fasil M.; Gayler, Sebastian; Weber, Tobias K. D.; Tesfaye, Kindie; Streck, Thilo. (2023). High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. doi:10.1038/s41597-023-02337-2
[28] DOI Abalos, Marta. (2021). Reply to CC1. doi:10.5194/acp-2021-206-ac1
[29] DOI Abalos, Marta. (2021). Reply on CC3. doi:10.5194/acp-2021-206-ac3
[30] DOI Abalos, Marta. (2021). Reply on CC2. doi:10.5194/acp-2021-206-ac2
[31] DOI Aylmer, Jake R.; Ferreira, David; Feltham, Daniel L. (2024). Impact of ocean heat transport on sea ice captured by a simple energy balance model. doi:10.1038/s43247-024-01565-7
[32] DOI Simpson, Charles; Hosking, J Scott; Mitchell, Dann; Betts, Richard A; Shuckburgh, Emily. (2021). Regional disparities and seasonal differences in climate risk to rice labour. doi:10.1088/1748-9326/ac3288
[33] DOI Sellevold, Raymond; Vizcaino, Miren. (2021). First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. doi:10.1029/2021gl092449
[34] DOI Lalande, Mickaël. (2021). Reply on RC1. doi:10.5194/esd-2021-43-ac1
[35] DOI Lalande, Mickaël. (2021). Reply on RC2. doi:10.5194/esd-2021-43-ac2
[36] DOI Andrade-Velázquez, Mercedes; Montero-Martínez, Martín José. (2023). Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6. doi:10.3390/cli11050111
[37] DOI Li, Juan; Zhao, Yuexuan; Wang, Menglu; Tan, Wei; Yin, Jiyuan. (2024). Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6. doi:10.3390/atmos15010139
[38] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982-2014. doi:10.5194/ems2022-447
[39] DOI de Souza Ferreira, Glauber Willian; Reboita, M. S.; Ribeiro, J. G. M.; Carvalho, V. S. B.; Santiago, M. E. V.; Silva, P. L. L. S.; Baldoni, T. C.; de Souza, C. A. (2023). Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate. doi:10.1007/s00382-023-06993-3
[40] DOI Simpson, Charles; Hosking, J.; Mitchell, Dann; Betts, Richard; Shuckburgh, Emily. (2021). Regional disparities and seasonal differences in climate risk to rice labour. doi:10.31223/x5sw3n
[41] DOI Kivimäki, Mika; Batty, G. David; Pentti, Jaana; Suomi, Juuso; Nyberg, Solja T.; Merikanto, Joonas; Nordling, Kalle; Ervasti, Jenni; Suominen, Sakari B.; Partanen, Antti-Ilari; Stenholm, Sari; Käyhkö, Jukka; Vahtera, Jussi. (2023). Climate Change, Summer Temperature, and Heat-Related Mortality in Finland: Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050. doi:10.1289/ehp12080
[42] DOI Ferreira, Glauber Willian de Souza; Reboita, Michelle Simões; Ribeiro, João Gabriel Martins; De Souza, Christie André. (2023). Assessment of Precipitation and Hydrological Droughts in South America through Statistically Downscaled CMIP6 Pro-jections. doi:10.20944/preprints202307.0373.v1
[43] DOI Robson, Jon; Sutton, Rowan; Menary, Matthew B.; Lai, Michael W. K. (2023). Overview of models used in the study and additional plots from Contrasting internally and externally generated Atlantic multidecadal variability and the role for AMOC in CMIP6 historical simulations. doi:10.6084/m9.figshare.24100547.v1
[44] DOI PAÇAL, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, Mehmet Levent; Wehner, Michael F; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.22541/essoar.168275876.64237989/v1
[45] DOI Reboita, Michelle Simões; Ferreira, Glauber Willian de Souza; Ribeiro, João Gabriel Martins; da Rocha, Rosmeri Porfírio; Rao, Vadlamudi Brahmananda. (2023). South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs. doi:10.3390/atmos14091380

References

[1] DOI Tatebe, Hiroaki; Ogura, Tomoo; Nitta, Tomoko; Komuro, Yoshiki; Ogochi, Koji; Takemura, Toshihiko; Sudo, Kengo; Sekiguchi, Miho; Abe, Manabu; Saito, Fuyuki; Chikira, Minoru; Watanabe, Shingo; Mori, Masato; Hirota, Nagio; Kawatani, Yoshio; Mochizuki, Takashi; Yoshimura, Kei; Takata, Kumiko; O'ishi, Ryouta; Yamazaki, Dai; Suzuki, Tatsuo; Kurogi, Masao; Kataoka, Takahito; Watanabe, Masahiro; Kimoto, Masahide. (2018). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. doi:10.5194/gmd-2018-155
[2] DOI Tatebe, Hiroaki; Ogura, Tomoo; Nitta, Tomoko; Komuro, Yoshiki; Ogochi, Koji; Takemura, Toshihiko; Sudo, Kengo; Sekiguchi, Miho; Abe, Manabu; Saito, Fuyuki; Chikira, Minoru; Watanabe, Shingo; Mori, Masato; Hirota, Nagio; Kawatani, Yoshio; Mochizuki, Takashi; Yoshimura, Kei; Takata, Kumiko; O'ishi, Ryouta; Yamazaki, Dai; Suzuki, Tatsuo; Kurogi, Masao; Kataoka, Takahito; Watanabe, Masahiro; Kimoto, Masahide. (1900). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. doi:10.5194/gmd-12-2727-2019

Is related to

[1] DOI Rivera, Paris. (2022). Evaluation of Historical Simulations of CMIP6 Models for Temperature and Precipitation in Guatemala. doi:10.1007/s41748-022-00333-x
[2] DOI Diamond, Michael S.; Gristey, Jake J.; Kay, Jennifer E.; Feingold, Graham. (2022). Anthropogenic aerosol and cryosphere changes drive Earth’s strong but transient clear-sky hemispheric albedo asymmetry. doi:10.1038/s43247-022-00546-y
[3] DOI Rajulapati, Chandra Rupa; Papalexiou, Simon Michael. (2023). Precipitation Bias Correction: A Novel Semi‐parametric Quantile Mapping Method. doi:10.1029/2023ea002823
[4] DOI Ferreira, Glauber; Reboita, Michelle; Ribeiro, João Gabriel; Carvalho, Vanessa; Santiago, Maria; Silva, Pedro; Baldoni, Thales; Souza, Christie. (2023). Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate. doi:10.21203/rs.3.rs-2983877/v1
[5] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-12-1061-2021
[6] DOI Yalcin, Emrah. (2023). Quantifying climate change impacts on hydropower production under CMIP6 multi-model ensemble projections using SWAT model. doi:10.1080/02626667.2023.2245815
[7] DOI Williamson, Tanja N.; Barton, Christopher D. (2020). Hydrologic modeling to examine the influence of the forestry reclamation approach and climate change on mineland hydrology. doi:10.1016/j.scitotenv.2020.140605

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[8] DOI Canadell, J.G.; Monteiro, P.M.S; Costa, M.H.; Cotrim da Cunha, L.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; Lohila, A.; Patra, P.K.; Piao, S.; Rogelj, J.; Syampungani, S.; Zaehle, S.; Zickfeld, K. (2023). Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.007
[9] DOI Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; Liao, H.; Unger, N.; Zanis, P. (2023). Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.008
[10] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010
[11] DOI Han, Pengfei; Long, Di; Zhao, Fanyu; Slater, Louise J. (2023). Response of Two Glaciers in Different Climate Settings of the Tibetan Plateau to Climate Change Through Year 2100 Using a Hybrid Modeling Approach. doi:10.1029/2022wr033618

Parent

WCRP CMIP6 CMIP MIROC MIROC6
Details

Attached Datasets ( 2993 )

Details for selected entry
[Entry acronym: C6_5208750] [Entry id: 5208750]