Cites
[3] DOI van Marle, Margreet J.E.; Kloster, Silvia; Magi, Brian I.; Marlon, Jennifer R.; Daniau, Anne-Laure; Field, Robert D.; Arneth, Almut; Forrest, Matthew; Hantson, Stijn; Kehrwald, Natalie M.; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stéphane; Yue, Chao; Kaiser, Johannes W.; van der Werf, Guido R.
(2016).
Biomass Burning emissions for CMIP6 (v1.2). doi:10.22033/ESGF/input4MIPs.1117 [4] DOI Hurtt, George; Chini, Louise; Sahajpal, Ritvik; Frolking, Steve; Bodirsky, Benjamin Leon; Calvin, Kate; Doelman, Jonathan; Fisk, Justin; Fujimori, Shinichiro; Goldewijk, Kees Klein; Hasegawa, Tomoko; Havlik, Petr; Heinimann, Andreas; Humpenöder, Florian; Jungclaus, Johann; Kaplan, Jed; Krisztin, Tamás; Lawrence, David; Lawrence, Peter; Mertz, Ole; Pongratz, Julia; Popp, Alexander; Riahi, Keywan; Shevliakova, Elena; Stehfest, Elke; Thornton, Peter; van Vuuren, Detlef; Zhang, Xin.
(2017).
Harmonization of global land use scenarios (LUH2): Historical v2.1h 850 - 2015. doi:10.22033/ESGF/input4MIPs.1127 [5] DOI Hoesly, Rachel; Smith, Steven; Feng, Leyang; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pitkanen, Tyler; Seibert, Jonathan J.; Vu, Linh; Andres, Robert J.; Bolt, Ryan M.; Bond, Tami C.; Dawidowski, Laura; Kholod, Nazar; Kurokawa, Jun-ichi; Li, Meng; Liu, Liang; Lu, Zifeng; Moura, Maria Cecilia P.; O'Rourke, Patrick R.; Zhang, Qiang.
(2017).
Historical Emissions (1750 - 2014) - CEDS - v2017-05-18. doi:10.22033/ESGF/input4MIPs.1241 Is referenced by
[1] DOI Wang, Meirong; Wang, Jun; Chen, Deliang; Duan, Anmin; Liu, Yimin; Zhou, Shunwu; Guo, Dong; Wang, Hengmao; Ju, Weimin.
(2020).
Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. doi:10.1088/1748-9326/ab57a3 [2] DOI Burke, Eleanor J.; Zhang, Yu; Krinner, Gerhard.
(2020).
Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. doi:10.5194/tc-14-3155-2020 [3] DOI Yamagami, Yoko; Watanabe, Masahiro; Mori, Masato; Ono, Jun.
(2022).
Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream. doi:10.1038/s41467-022-31117-6 [4] DOI Ono, Jun; Watanabe, Masahiro; Komuro, Yoshiki; Tatebe, Hiroaki; Abe, Manabu.
(2022).
Enhanced Arctic warming amplification revealed in a low-emission scenario. doi:10.1038/s43247-022-00354-4 [5] DOI Ayodele, Adigun Paul; Precious, Ebiendele Eromosele; Brhane, Ermias Sisay; Seun, Adawa Ifeoluwa.
(2022).
CMIP6 multi-model evaluation of summer extreme precipitation over East Asia. doi:10.1007/s40808-022-01433-3 [6] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan.
(2021).
Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43 [8] DOI Yang, Shuyu; Yang, Dawen; Zhao, Baoxu; Ma, Teng; Lu, Weiwei; Santisirisomboon, Jerasorn.
(2022).
Future Changes in High and Low Flows under the Impacts of Climate and Land Use Changes in the Jiulong River Basin of Southeast China. doi:10.3390/atmos13020150 [9] DOI Kohyama, Tsubasa; Yamagami, Yoko; Miura, Hiroaki; Kido, Shoichiro; Tatebe, Hiroaki; Watanabe, Masahiro.
(2021).
The Gulf Stream and Kuroshio Current are synchronized. doi:10.1126/science.abh3295 [10] DOI Cook, B. I.; Mankin, J. S.; Marvel, K.; Williams, A. P.; Smerdon, J. E.; Anchukaitis, K. J.
(2020).
Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios. doi:10.1029/2019ef001461 [11] DOI Popova, Kristina V.; Baturina, Natalya S.; Molodtsov, Vladimir V.; Yefremova, Oxana V.; Zharkov, Vasily D.; Sergeev, Michael G.
(2022).
The Handsome Cross Grasshopper Oedaleus decorus (Germar, 1825) (Orthoptera: Acrididae) as a Neglected Pest in the South-Eastern Part of West Siberian Plain. doi:10.3390/insects13010049 [12] DOI Jönsson, A., Bender, F. A.
(2022).
Persistence and Variability of Earth`s Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. doi:10.1175/jcli-d-20-0970.1 [13] DOI Kumar, Amit; Singh, Raghvender Pratap; Dubey, Swatantra Kumar; Gaurav, Kumar.
(2022).
Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change. doi:10.3390/agriculture12122005 [14] DOI Lea, James M.; Fitt, Robert N. L.; Brough, Stephen; Carr, Georgia; Dick, Jonathan; Jones, Natasha; Webster, Richard J.
(2024).
Making climate reanalysis and CMIP6 data processing easy: two “point-and-click” cloud based user interfaces for environmental and ecological studies. doi:10.3389/fenvs.2024.1294446 [15] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei.
(2021).
The Brewer–Dobson circulation in CMIP6. doi:10.5194/acp-21-13571-2021 [16] DOI Karmouche, Soufiane; Galytska, Evgenia; Runge, Jakob; Meehl, Gerald A.; Phillips, Adam S.; Weigel, Katja; Eyring, Veronika.
(2022).
Regime-oriented causal model evaluation of Atlantic-Pacific teleconnections in CMIP6. doi:10.5194/egusphere-2022-1013 [17] DOI Kunchala, Ravi Kumar; Attada, Raju; Karumuri, Rama Krishna; Seelanki, Vivek; Singh, Bhupendra Bahadur; Ashok, Karumuri; Hoteit, Ibrahim.
(2022).
Aerosol Optical Depth over the Middle East and North Africa region in CMIP6 Models: Climatology, Variability, and Trends. doi:10.21203/rs.3.rs-1903026/v1 [18] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei.
(2021).
The Brewer-Dobson circulation in CMIP6. doi:10.5194/acp-2021-206 [19] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan.
(2022).
Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701 [22] DOI Papalexiou, Simon Michael; Rajulapati, Chandra Rupa; Andreadis, Konstantinos M.; Foufoula‐Georgiou, Efi; Clark, Martyn P.; Trenberth, Kevin E.
(2021).
Probabilistic Evaluation of Drought in CMIP6 Simulations. doi:10.1029/2021ef002150 [24] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku.
(2022).
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014. doi:10.5194/tc-16-1007-2022 [25] DOI Mori, Masato; Kosaka, Yu; Taguchi, Bunmei; Tokinaga, Hiroki; Tatebe, Hiroaki; Nakamura, Hisashi.
(2024).
Northern Hemisphere winter atmospheric teleconnections are intensified by extratropical ocean-atmosphere coupling. doi:10.1038/s43247-024-01282-1 [26] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred.
(2023).
Constraints on simulated past Arctic amplification and lapse rate feedback from observations. doi:10.5194/acp-23-9963-2023 [27] DOI Jönsson, Aiden R.; Bender, Frida A.-M.
(2023).
The implications of maintaining Earth's hemispheric albedo symmetry for shortwave radiative feedbacks. doi:10.5194/esd-14-345-2023 [28] DOI Ferreira, Glauber; Reboita, Michelle; Ribeiro, João Gabriel; Carvalho, Vanessa; Santiago, Maria; Silva, Pedro; Baldoni, Thales; Souza, Christie.
(2023).
Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate. doi:10.21203/rs.3.rs-2983877/v1 [30] DOI Ferreira, Glauber Willian de Souza; Reboita, Michelle Simões; Ribeiro, João Gabriel Martins; de Souza, Christie André.
(2023).
Assessment of Precipitation and Hydrological Droughts in South America through Statistically Downscaled CMIP6 Projections. doi:10.3390/cli11080166 [31] DOI Blanchet, Cécile L.; Ramisch, Arne; Tjallingii, Rik; Ionita, Monica; Laruelle, Louison; Bagge, Meike; Klemann, Volker; Brauer, Achim.
(2024).
Climatic pacing of extreme Nile floods during the North African Humid Period. doi:10.1038/s41561-024-01471-9 [32] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan.
(2021).
Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-12-1061-2021 [33] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika.
(2023).
Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906 [34] DOI Rettie, Fasil M.; Gayler, Sebastian; Weber, Tobias K. D.; Tesfaye, Kindie; Streck, Thilo.
(2023).
High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. doi:10.1038/s41597-023-02337-2 [38] DOI Cook, B. I.; Mankin, J. S.; Williams, A. P.; Marvel, K. D.; Smerdon, J. E.; Liu, H.
(2021).
Uncertainties, limits, and benefits of climate change mitigation for soil moisture drought in southwestern North America. doi:10.1029/2021EF002014 [39] DOI Cook, B. I.; Mankin, J. S.; Williams, A. P.; Marvel, K. D.; Smerdon, J. E.; Liu, H.
(2021).
Uncertainties, Limits, and Benefits of Climate Change Mitigation for Soil Moisture Drought in Southwestern North America. doi:10.1029/2021ef002014 [40] DOI Sellevold, Raymond; Vizcaino, Miren.
(2021).
First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. doi:10.1029/2021gl092449 [43] DOI Cook, B. I.; Mankin, J. S.; Williams, A. P.; Marvel, K. D.; Smerdon, J. E.; Liu, H.
(2022).
Uncertainties, Limits, and Benefits of Climate Change
Mitigation for Soil Moisture Drought in Southwestern
North America. doi:10.7916/m79w-wc11 [45] DOI Li, Juan; Zhao, Yuexuan; Wang, Menglu; Tan, Wei; Yin, Jiyuan.
(2024).
Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6. doi:10.3390/atmos15010139 [47] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku.
(2022).
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982-2014. doi:10.5194/ems2022-447 [48] DOI de Souza Ferreira, Glauber Willian; Reboita, M. S.; Ribeiro, J. G. M.; Carvalho, V. S. B.; Santiago, M. E. V.; Silva, P. L. L. S.; Baldoni, T. C.; de Souza, C. A.
(2023).
Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate. doi:10.1007/s00382-023-06993-3 [49] DOI Kivimäki, Mika; Batty, G. David; Pentti, Jaana; Suomi, Juuso; Nyberg, Solja T.; Merikanto, Joonas; Nordling, Kalle; Ervasti, Jenni; Suominen, Sakari B.; Partanen, Antti-Ilari; Stenholm, Sari; Käyhkö, Jukka; Vahtera, Jussi.
(2023).
Climate Change, Summer Temperature, and Heat-Related Mortality in Finland: Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050. doi:10.1289/ehp12080 [50] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred.
(2023).
Constraints on simulated past Arctic amplification and lapse-rate feedback from observations. doi:10.5194/acp-2022-836 [51] DOI Ferreira, Glauber Willian de Souza; Reboita, Michelle Simões; Ribeiro, João Gabriel Martins; De Souza, Christie André.
(2023).
Assessment of Precipitation and Hydrological Droughts in South America through Statistically Downscaled CMIP6 Pro-jections. doi:10.20944/preprints202307.0373.v1 [52] DOI Karmouche, Soufiane; Galytska, Evgenia; Runge, Jakob; Meehl, Gerald A.; Phillips, Adam S.; Weigel, Katja; Eyring, Veronika.
(2023).
Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6. doi:10.5194/esd-14-309-2023 [53] DOI Robson, Jon; Sutton, Rowan; Menary, Matthew B.; Lai, Michael W. K.
(2023).
Overview of models used in the study and additional plots from Contrasting internally and externally generated Atlantic multidecadal variability and the role for AMOC in CMIP6 historical simulations. doi:10.6084/m9.figshare.24100547.v1 Is cited by
[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y.
(2023).
Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.
Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B.
Zhou (eds.)]. doi:10.1017/9781009157896.011 [2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T.
(2023).
Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006 [3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y.
(2023).
Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005 [4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z.
(2023).
Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012 [5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B.
(2023).
Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013 [6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H.
(2023).
Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021 [7] DOI Intergovernmental Panel on Climate Change (IPCC).
(2023).
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896 [8] DOI Canadell, J.G.; Monteiro, P.M.S; Costa, M.H.; Cotrim da Cunha, L.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; Lohila, A.; Patra, P.K.; Piao, S.; Rogelj, J.; Syampungani, S.; Zaehle, S.; Zickfeld, K.
(2023).
Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.007 [9] DOI Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; Liao, H.; Unger, N.; Zanis, P.
(2023).
Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.008 [10] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O.
(2023).
Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010