The Convection and Turbulence Experiment (KonTur) was conducted in the southeastern part of the North Sea from 14 September to 21 October 1981 (with a break from 4 to 8 October). KONTUR aimed at two main scientific objectives. First, to observe the formation and time variation of regularly organized convection in the lower troposphere as a function of the mean atmospheric flow and the lower boundary condition and to quantify the dependence of the vertical transports of momentum, heat and water mass on various scales of motion in order to test existing convection models and to provide an observational background for the extension of theoretical concepts. Second goal was to determine the mean and turbulent quantities within the marine atmospheric boundary layer (ABL), including the large scale horizontal and vertical advection of momentum, heat and water vapour, cloud microphysics and the radiation field, in order to assemble a comprehensive data set for boundary layer modelling with first and second order closure methods. The experiment covered an area in the southeastern part of the North Sea (German Bight), roughly between latitudes 53¿N and 56¿N and longitudes 6¿E and 9¿E. Both the convection and the turbulence programme made use of the same experimental tools which can be subdivided in the following four groups: the central station occupied by the research vessel Meteor, the aerological network (Borkumriff, RV Meteor, RV Gauss/Poseidon, Research Platform Nordsee, Elbe 1), two aircraft (Hercules C-130, Falcon 20) and supporting observations, such as satellite images, cloud photography, surface and upper air large-scale fields from routine data. KONTUR 1981 was followed by the experiments KONTROL 1984 and KONTROL 1985.
Hoeber, Heinrich; Kruspe, Gottfried; Brümmer, Burghard; Wetzel, Christian (2012). KONTUR 1981 - Convection and Turbulence Experiment: radiosoundings at the research vessel Meteor. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.1594/WDCC/UNI_HH_MI_KONTUR1981
observation: Level2c All presented data is observational. Accuracy and precision are dependent on sensors and platforms. Details to sensor types, error sources and quality checking are given in Additional Information accompanying each dataset.;All datasets passed several quality checks. Quality control took place during the field phase; data were controlled during their use for research and and again before publishing.
Data were processed with objective algorithms (e.g. to reject values out of range) and were controlled subjectively by experienced researchers. The processing is described in detail in the documentation of each dataset.
Completeness report
Data acquisition is completed.
Description
Data acquisition is completed.
FAIR
F-UJI result: total 62 %
Description
Summary: Findable: 6 of 7 level; Accessible: 2 of 3 level; Interoperable: 3 of 4 level; Reusable: 4 of 10 level
SQA - Scientific Quality Assurance 'approved by author'
Result Date
2012-03-22
Technical Quality Assurance (TQA)
TQA - Technical Quality Assurance 'approved by WDCC'
Description
1. Number of data sets is correct and > 0: passed; 2. Size of every data set is > 0: passed; 3. The data sets and corresponding metadata are accessible: passed; 4. The data sizes are controlled and correct: passed; 6. The format is correct: passed; 7. Variable description and data are consistent: passed
Method
WDCC-TQA checklist
Method Description
Checks performed by WDCC. The list of TQA metrics are documented in the 'WDCC User Guide for Data Publication' Chapter 8.1.1