Under the heading of the OSPAR convention (Sect. 1.1), the IGC-EMO database of daily freshwater inflows and nutrient loads was compiled by van Leeuwen and Lenhart (2021), which covers the major rivers discharging into the Baltic Sea, North Sea and Northeast Atlantic (Sect. 1.2). In this database, the data are distributed in separate ASCII files according to the respective country and river. In order to allow an easier utilization within a regional Earth System or ocean modelling framework, we mapped the IGC-EMO data onto the flow grid of the European 1/12° domain of the Hydrological Discharge (HD) model (Sect. 1.3). This mapping was done for daily time series of discharge, total nitrogen (N), total phosphorus (P) and Silicate for the period 1940-2022 following the procedure described in Sect. 1.4. Detailed information you can find in the specified sections of the attached PDF https://www.wdc-climate.de/ui/entry?acronym=IGC-EMO_HD_info
van Leeuwen, Sonja; Hagemann, Stefan (2023). Mapping of IGC-EMO nutrient loads on the high resolution HD model grid (Version 1). World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/IGC-EMO_HD_v1
SQA - Scientific Quality Assurance 'approved by author'
Result Date
2023-06-21
Technical Quality Assurance (TQA)
TQA - Technical Quality Assurance 'approved by WDCC'
Description
1. Number of data sets is correct and > 0: passed; 2. Size of every data set is > 0: passed; 3. The data sets and corresponding metadata are accessible: passed; 4. The data sizes are controlled and correct: passed; 5. The spatial-temporal coverage description (metadata) is consistent to the data, time steps are correct and the time coordinate is continuous: passed; 6. The format is correct: passed; 7. Variable description and data are consistent: passed
Method
WDCC-TQA checklist
Method Description
Checks performed by WDCC. The list of TQA metrics are documented in the 'WDCC User Guide for Data Publication' Chapter 8.1.1
[1] DOIHagemann, Stefan; Stacke, Tobias; Ho-Hagemann, Ha T. M. (2020). High Resolution Discharge Simulations Over Europe and the Baltic Sea Catchment. doi:10.3389/feart.2020.00012
[2] DOIHagemann, Stefan; Stacke, Tobias. (2023). Complementing ERA5 and E-OBS with high-resolution river discharge over Europe. doi:10.1016/j.oceano.2022.07.003
[3] DOIHagemann, S., Ho-Hagemann, H. T., Hanke, M. (2023). The hydrological discharge model - a river runoff component for offline and coupled model applications (5.2.0). doi:10.5281/zenodo.7890682
[5] DOIHagemann, Stefan; Dümenil Gates, Lydia. (2001). Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model. doi:10.1029/2000jd900568
[6] DOILenhart, Hermann-J.; Mills, David K.; Baretta-Bekker, Hanneke; van Leeuwen, Sonja M.; der Molen, Johan van; Baretta, Job W.; Blaas, Meinte; Desmit, Xavier; Kühn, Wilfried; Lacroix, Geneviève; Los, Hans J.; Ménesguen, Alain; Neves, Ramiro; Proctor, Roger; Ruardij, Piet; Skogen, Morten D.; Vanhoutte-Brunier, Alice; Villars, Monique T.; Wakelin, Sarah L. (2010). Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea. doi:10.1016/j.jmarsys.2009.12.014
[7] DOIvan Leeuwen, S., and Lenhart, H. (2021). OSPAR ICG-EMO riverine database 2020-05-01 used in 2020 workshop. doi:10.25850/nioz/7b.b.vc