Is referenced by
[1] DOI Tjiputra, Jerry F.; Schwinger, Jörg; Bentsen, Mats; Morée, Anne L.; Gao, Shuang; Bethke, Ingo; Heinze, Christoph; Goris, Nadine; Gupta, Alok; He, Yanchun; Olivié, Dirk; Seland, Øyvind; Schulz, Michael.
(2020).
Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2). doi:10.5194/gmd-2019-347 [2] DOI Keeble, James; Chiodo, Gabriel; Et Al.
(2021).
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.3929/ethz-b-000478110 [3] DOI Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Burrows, Susannah; Cameron-Smith, Philip; Cugnet, David; Danek, Christopher; Deushi, Makoto; Horowitz, Larry W.; Kubin, Anne; Li, Lijuan; Lohmann, Gerrit; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Olivié, Dirk; Park, Sungsu; Seland, Øyvind; Stoll, Jens; Wieners, Karl-Hermann; Wu, Tongwen.
(2021).
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.5194/acp-21-5015-2021 [4] DOI Emmenegger, Todd; Kuo, Yi-Hung; Xie, Shaocheng; Zhang, Chengzhu; Tao, Cheng; Neelin, J. David.
(2022).
Evaluating Tropical Precipitation Relations in CMIP6 Models with ARM Data. doi:10.1175/jcli-d-21-0386.1 [5] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frederic; McKain, Kathryn; Ralph, Keeling; Morgan, Eric; Patra, Prabir K.; Sargent, Maryann; Sweeney, Colm; Keppel-Aleks, Gretchen.
(2022).
Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1002/essoar.10512001.1 [6] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry.
(2022).
Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022 [7] DOI Wang, Haolin; Lu, Xiao; Jacob, Daniel J.; Cooper, Owen R.; Chang, Kai-Lan; Li, Ke; Gao, Meng; Liu, Yiming; Sheng, Bosi; Wu, Kai; Wu, Tongwen; Zhang, Jie; Sauvage, Bastien; Nédélec, Philippe; Blot, Romain; Fan, Shaojia.
(2022).
Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. doi:10.5194/acp-2022-381 [9] DOI Huang, Wan‐Ru; Liu, Pin‐Yi; Lee, Shih‐Yu; Wu, Chi‐Hua.
(2022).
Changes in Early Summer Precipitation Characteristics Over South China and Taiwan: CESM2‐LE and CMIP6 Multi‐Model Simulations and Projections. doi:10.1029/2022jd037181 [10] DOI Wang, Shizhu; Wang, Qiang; Wang, Muyin; Lohmann, Gerrit; Qiao, Fangli.
(2022).
Arctic Ocean Freshwater in CMIP6 Coupled Models. doi:10.1029/2022ef002878 [11] DOI Anderegg, William R. L.; Wu, Chao; Acil, Nezha; Carvalhais, Nuno; Pugh, Thomas A. M.; Sadler, Jon P.; Seidl, Rupert.
(2022).
A climate risk analysis of Earth’s forests in the 21st century. doi:10.1126/science.abp9723 [12] DOI Jönsson, A., Bender, F. A.
(2022).
Persistence and Variability of Earth`s Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. doi:10.1175/jcli-d-20-0970.1 [13] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan.
(2022).
Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701 [14] DOI Çetin, I. I.; Yücel, I.; Yılmaz, M. T.; Önol, B.
(2024).
Historical variability of Coupled Model Intercomparison Project Version 6 (CMIP6)-driven surface winds and global reanalysis data for the Eastern Mediterranean. doi:10.1007/s00704-024-04869-y [15] DOI Olson, Roman; Kim, Soong-Ki; Fan, Yanan; An, Soon-Il.
(2022).
Probabilistic projections of El Niño Southern Oscillation properties accounting for model dependence and skill. doi:10.1038/s41598-022-26513-3 [16] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku.
(2022).
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014. doi:10.5194/tc-16-1007-2022 [18] DOI Olusegun, Christiana; Ojo, Olusola; Olusola, Adeyemi; Ogunjo, Samuel.
(2023).
Solar radiation variability across Nigeria’s climatic zones: a validation and projection study with CORDEX, CMIP5, and CMIP6 models. doi:10.1007/s40808-023-01848-6 [19] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika.
(2023).
Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906 [20] DOI Vaittinada Ayar, Pradeebane; Tjiputra, Jerry; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew.
(2022).
Contrasting projection of the ENSO-driven CO&lt;sub&gt;2&lt;/sub&gt; flux variability in the Equatorial Pacific under high warming scenario. doi:10.5194/esd-2022-12 [21] DOI AYAR, Pradeebane VAITTINADA; Battisti, David S.; Li, Camille; King, Martin Peter; Vrac, Mathieu; Tjiputra, Jerry Fong.
(2023).
A regime view of ENSO flavours through clustering in CMIP6 models. doi:10.22541/essoar.167458065.54814300/v2 [22] DOI Aylmer, Jake R.; Ferreira, David; Feltham, Daniel L.
(2024).
Impact of ocean heat transport on sea ice captured by a simple energy balance model. doi:10.1038/s43247-024-01565-7 [23] DOI Hinrichs, Claudia; Hauck, Judith.
(2022).
Report on skill of CMIP6 models to simulate alkalinity and improved parameterizations for large scale alkalinity distribution. doi:10.3289/oceannets_d4.4 [25] DOI Bhattacharya, Biswarup; Mohanty, Sachiko; Singh, Charu.
(2022).
Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean. doi:10.1007/s00704-022-03952-6 [26] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard.
(2022).
Equatorial Pacific pCO 2 Interannual Variability in CMIP6
Models. doi:10.7916/dzbv-zs62 [27] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku.
(2022).
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982-2014. doi:10.5194/ems2022-447 [29] DOI Vaittinada Ayar, Pradeebane; Battisti, David; Li, Camille; King, Martin; Vrac, Mathieu; Tjiputra, Jerry.
(2024).
A Regime View of ENSO Flavors Through Clustering in CMIP6 Models. doi:10.5194/egusphere-egu24-12936 [30] DOI Hinrichs, Claudia; Köhler, Peter; Völker, Christoph; Hauck, Judith.
(2023).
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement. doi:10.5194/bg-20-3717-2023 Is related to
[1] DOI Wang, Haolin; Lu, Xiao; Jacob, Daniel J.; Cooper, Owen R.; Chang, Kai-Lan; Li, Ke; Gao, Meng; Liu, Yiming; Sheng, Bosi; Wu, Kai; Wu, Tongwen; Zhang, Jie; Sauvage, Bastien; Nédélec, Philippe; Blot, Romain; Fan, Shaojia.
(2022).
Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. doi:10.5194/acp-22-13753-2022 [2] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard.
(2022).
Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1029/2022jg007243 [3] DOI Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Cugnet, David; Danabasoglu, Gokhan; Deushi, Makoto; Horowitz, Larry W.; Li, Lijuan; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Park, Sungsu; Wu, Tongwen.
(2020).
Evaluating stratospheric ozone and water vapor changes in CMIP66 models from 1850–2100. doi:10.5194/acp-2019-1202 [5] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frédéric; McKain, Kathryn; Keeling, Ralph F.; Morgan, Eric J.; Patra, Prabir K.; Sargent, Maryann R.; Sweeney, Colm; Keppel‐Aleks, Gretchen.
(2023).
Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1029/2022gb007520 [7] DOI Rajulapati, Chandra Rupa; Papalexiou, Simon Michael.
(2023).
Precipitation Bias Correction: A Novel Semi‐parametric Quantile Mapping Method. doi:10.1029/2023ea002823 [9] DOI Rettie, Fasil M.; Gayler, Sebastian; Weber, Tobias K. D.; Tesfaye, Kindie; Streck, Thilo.
(2023).
High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. doi:10.1038/s41597-023-02337-2 [10] DOI Bulgin, Claire E; Mecking, Jennifer V; Harvey, Ben J; Jevrejeva, Svetlana; McCarroll, Niall F; Merchant, Christopher J; Sinha, Bablu.
(2023).
Dynamic sea-level changes and potential implications for storm surges in the UK: a storylines perspective. doi:10.1088/1748-9326/acc6df [12] DOI Rodgers, Keith B.; Schwinger, Jörg; Fassbender, Andrea J.; Landschützer, Peter; Yamaguchi, Ryohei; Frenzel, Hartmut; Stein, Karl; Müller, Jens Daniel; Goris, Nadine; Sharma, Sahil; Bushinsky, Seth; Chau, Thi‐Tuyet‐Trang; Gehlen, Marion; Gallego, M. Angeles; Gloege, Lucas; Gregor, Luke; Gruber, Nicolas; Hauck, Judith; Iida, Yosuke; Ishii, Masao; Keppler, Lydia; Kim, Ji‐Eun; Schlunegger, Sarah; Tjiputra, Jerry; Toyama, Katsuya; Vaittinada Ayar, Pradeebane; Velo, Antón.
(2023).
Seasonal Variability of the Surface Ocean Carbon Cycle: A Synthesis. doi:10.1029/2023gb007798 Is cited by
[1] DOI Tjiputra, Jerry F.; Schwinger, Jörg; Bentsen, Mats; Morée, Anne L.; Gao, Shuang; Bethke, Ingo; Heinze, Christoph; Goris, Nadine; Gupta, Alok; He, Yan-Chun; Olivié, Dirk; Seland, Øyvind; Schulz, Michael.
(2020).
Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2). doi:10.5194/gmd-13-2393-2020 [2] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y.
(2023).
Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.
Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B.
Zhou (eds.)]. doi:10.1017/9781009157896.011 [3] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T.
(2023).
Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006 [4] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y.
(2023).
Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005 [5] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z.
(2023).
Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012 [6] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B.
(2023).
Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013 [7] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H.
(2023).
Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021 [8] DOI Intergovernmental Panel on Climate Change (IPCC).
(2023).
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896 [9] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O.
(2023).
Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010