WCRP CMIP6 CMIP NCC NorESM2-MM historical

Bentsen, Mats et al.

Dataset Group
Summary
These data include all datasets published for 'CMIP6.CMIP.NCC.NorESM2-MM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The NorESM2-MM (medium atmosphere-medium ocean resolution, GHG concentration driven) climate model, released in 2017, includes the following components: aerosol: OsloAero, atmos: CAM-OSLO (1 degree resolution; 288 x 192; 32 levels; top level 3 mb), atmosChem: OsloChemSimp, land: CLM, landIce: CISM, ocean: MICOM (1 degree resolution; 360 x 384; 70 levels; top grid cell minimum 0-2.5 m [native model uses hybrid density and generic upper-layer coordinate interpolated to z-level for contributed data]), ocnBgchem: HAMOCC, seaIce: CICE. The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Mats Bentsen (
 mben@nullnorceresearch.no
0000-0001-5441-4063)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1849-12-31 to 2014-12-31 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
5.94 TiB (6535598067166 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-06-13
Cite as
Bentsen, Mats; Oliviè, Dirk Jan Leo; Seland, Øyvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkevåg, Alf; Schwinger, Jörg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael (2023). NCC NorESM2-MM model output prepared for CMIP6 CMIP historical. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_5263293

BibTeX RIS
Description
as consistent as the model(s) NorESM2-MM
Description
All TQA checks were passed for WCRP CMIP6 CMIP NCC NorESM2-MM historical.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-03-18
Contact typePersonORCIDOrganization
-
-
-
-
-
-

Is part of

[1] DOI Bentsen, Mats; Oliviè, Dirk Jan Leo; Seland, Øyvind; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkevåg, Alf; Schwinger, Jörg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar Andreas; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael. (2019). NCC NorESM2-MM model output prepared for CMIP6 CMIP historical. doi:10.22033/ESGF/CMIP6.8040

Is referenced by

[1] DOI Tjiputra, Jerry F.; Schwinger, Jörg; Bentsen, Mats; Morée, Anne L.; Gao, Shuang; Bethke, Ingo; Heinze, Christoph; Goris, Nadine; Gupta, Alok; He, Yanchun; Olivié, Dirk; Seland, Øyvind; Schulz, Michael. (2020). Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2). doi:10.5194/gmd-2019-347
[2] DOI Keeble, James; Chiodo, Gabriel; Et Al. (2021). Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.3929/ethz-b-000478110
[3] DOI Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Burrows, Susannah; Cameron-Smith, Philip; Cugnet, David; Danek, Christopher; Deushi, Makoto; Horowitz, Larry W.; Kubin, Anne; Li, Lijuan; Lohmann, Gerrit; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Olivié, Dirk; Park, Sungsu; Seland, Øyvind; Stoll, Jens; Wieners, Karl-Hermann; Wu, Tongwen. (2021). Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.5194/acp-21-5015-2021
[4] DOI Emmenegger, Todd; Kuo, Yi-Hung; Xie, Shaocheng; Zhang, Chengzhu; Tao, Cheng; Neelin, J. David. (2022). Evaluating Tropical Precipitation Relations in CMIP6 Models with ARM Data. doi:10.1175/jcli-d-21-0386.1
[5] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frederic; McKain, Kathryn; Ralph, Keeling; Morgan, Eric; Patra, Prabir K.; Sargent, Maryann; Sweeney, Colm; Keppel-Aleks, Gretchen. (2022). Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1002/essoar.10512001.1
[6] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry. (2022). Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022
[7] DOI Wang, Haolin; Lu, Xiao; Jacob, Daniel J.; Cooper, Owen R.; Chang, Kai-Lan; Li, Ke; Gao, Meng; Liu, Yiming; Sheng, Bosi; Wu, Kai; Wu, Tongwen; Zhang, Jie; Sauvage, Bastien; Nédélec, Philippe; Blot, Romain; Fan, Shaojia. (2022). Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. doi:10.5194/acp-2022-381
[8] DOI Singh, Charu. (2022). Intra-seasonal oscillations of South Asian summer monsoon in coupled climate model cohort CMIP6. doi:10.1007/s00382-022-06323-z
[9] DOI Huang, Wan‐Ru; Liu, Pin‐Yi; Lee, Shih‐Yu; Wu, Chi‐Hua. (2022). Changes in Early Summer Precipitation Characteristics Over South China and Taiwan: CESM2‐LE and CMIP6 Multi‐Model Simulations and Projections. doi:10.1029/2022jd037181
[10] DOI Wang, Shizhu; Wang, Qiang; Wang, Muyin; Lohmann, Gerrit; Qiao, Fangli. (2022). Arctic Ocean Freshwater in CMIP6 Coupled Models. doi:10.1029/2022ef002878
[11] DOI Anderegg, William R. L.; Wu, Chao; Acil, Nezha; Carvalhais, Nuno; Pugh, Thomas A. M.; Sadler, Jon P.; Seidl, Rupert. (2022). A climate risk analysis of Earth’s forests in the 21st century. doi:10.1126/science.abp9723
[12] DOI Jönsson, A., Bender, F. A. (2022). Persistence and Variability of Earth`s Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. doi:10.1175/jcli-d-20-0970.1
[13] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan. (2022). Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701
[14] DOI Çetin, I. I.; Yücel, I.; Yılmaz, M. T.; Önol, B. (2024). Historical variability of Coupled Model Intercomparison Project Version 6 (CMIP6)-driven surface winds and global reanalysis data for the Eastern Mediterranean. doi:10.1007/s00704-024-04869-y
[15] DOI Olson, Roman; Kim, Soong-Ki; Fan, Yanan; An, Soon-Il. (2022). Probabilistic projections of El Niño Southern Oscillation properties accounting for model dependence and skill. doi:10.1038/s41598-022-26513-3
[16] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014. doi:10.5194/tc-16-1007-2022
[17] DOI Duffy, Margaret L; O'Gorman, Paul A. (2022). Intermodel spread in Walker circulation responses linked to spread in moist stability and radiation responses. doi:10.22541/essoar.167078790.00035564/v1
[18] DOI Olusegun, Christiana; Ojo, Olusola; Olusola, Adeyemi; Ogunjo, Samuel. (2023). Solar radiation variability across Nigeria’s climatic zones: a validation and projection study with CORDEX, CMIP5, and CMIP6 models. doi:10.1007/s40808-023-01848-6
[19] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[20] DOI Vaittinada Ayar, Pradeebane; Tjiputra, Jerry; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew. (2022). Contrasting projection of the ENSO-driven CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; flux variability in the Equatorial Pacific under high warming scenario. doi:10.5194/esd-2022-12
[21] DOI AYAR, Pradeebane VAITTINADA; Battisti, David S.; Li, Camille; King, Martin Peter; Vrac, Mathieu; Tjiputra, Jerry Fong. (2023). A regime view of ENSO flavours through clustering in CMIP6 models. doi:10.22541/essoar.167458065.54814300/v2
[22] DOI Aylmer, Jake R.; Ferreira, David; Feltham, Daniel L. (2024). Impact of ocean heat transport on sea ice captured by a simple energy balance model. doi:10.1038/s43247-024-01565-7
[23] DOI Hinrichs, Claudia; Hauck, Judith. (2022). Report on skill of CMIP6 models to simulate alkalinity and improved parameterizations for large scale alkalinity distribution. doi:10.3289/oceannets_d4.4
[24] DOI Wong, S. C. K.; McKinley, G. A.; Seager, R. (2022). Equatorial Pacific pCO2 interannual variability in CMIP6 models. doi:10.1029/2022JG007243
[25] DOI Bhattacharya, Biswarup; Mohanty, Sachiko; Singh, Charu. (2022). Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean. doi:10.1007/s00704-022-03952-6
[26] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard. (2022). Equatorial Pacific pCO 2 Interannual Variability in CMIP6 Models. doi:10.7916/dzbv-zs62
[27] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982-2014. doi:10.5194/ems2022-447
[28] DOI PAÇAL, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, Mehmet Levent; Wehner, Michael F; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.22541/essoar.168275876.64237989/v1
[29] DOI Vaittinada Ayar, Pradeebane; Battisti, David; Li, Camille; King, Martin; Vrac, Mathieu; Tjiputra, Jerry. (2024). A Regime View of ENSO Flavors Through Clustering in CMIP6 Models. doi:10.5194/egusphere-egu24-12936
[30] DOI Hinrichs, Claudia; Köhler, Peter; Völker, Christoph; Hauck, Judith. (2023). Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement. doi:10.5194/bg-20-3717-2023

Is related to

[1] DOI Wang, Haolin; Lu, Xiao; Jacob, Daniel J.; Cooper, Owen R.; Chang, Kai-Lan; Li, Ke; Gao, Meng; Liu, Yiming; Sheng, Bosi; Wu, Kai; Wu, Tongwen; Zhang, Jie; Sauvage, Bastien; Nédélec, Philippe; Blot, Romain; Fan, Shaojia. (2022). Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. doi:10.5194/acp-22-13753-2022
[2] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard. (2022). Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1029/2022jg007243
[3] DOI Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Cugnet, David; Danabasoglu, Gokhan; Deushi, Makoto; Horowitz, Larry W.; Li, Lijuan; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Park, Sungsu; Wu, Tongwen. (2020). Evaluating stratospheric ozone and water vapor changes in CMIP66 models from 1850–2100. doi:10.5194/acp-2019-1202
[4] DOI Rivera, Paris. (2022). Evaluation of Historical Simulations of CMIP6 Models for Temperature and Precipitation in Guatemala. doi:10.1007/s41748-022-00333-x
[5] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frédéric; McKain, Kathryn; Keeling, Ralph F.; Morgan, Eric J.; Patra, Prabir K.; Sargent, Maryann R.; Sweeney, Colm; Keppel‐Aleks, Gretchen. (2023). Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1029/2022gb007520
[6] DOI Shukla, Krishna Kumar; Attada, Raju. (2023). CMIP6 models informed summer human thermal discomfort conditions in Indian regional hotspot. doi:10.1038/s41598-023-38602-y
[7] DOI Rajulapati, Chandra Rupa; Papalexiou, Simon Michael. (2023). Precipitation Bias Correction: A Novel Semi‐parametric Quantile Mapping Method. doi:10.1029/2023ea002823
[8] DOI Wong, Suki Cheuk-Kiu; McKinley, Galen A; Seager, Richard. (2022). Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1002/essoar.10512730.1
[9] DOI Rettie, Fasil M.; Gayler, Sebastian; Weber, Tobias K. D.; Tesfaye, Kindie; Streck, Thilo. (2023). High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. doi:10.1038/s41597-023-02337-2
[10] DOI Bulgin, Claire E; Mecking, Jennifer V; Harvey, Ben J; Jevrejeva, Svetlana; McCarroll, Niall F; Merchant, Christopher J; Sinha, Bablu. (2023). Dynamic sea-level changes and potential implications for storm surges in the UK: a storylines perspective. doi:10.1088/1748-9326/acc6df
[11] DOI Yalcin, Emrah. (2023). Quantifying climate change impacts on hydropower production under CMIP6 multi-model ensemble projections using SWAT model. doi:10.1080/02626667.2023.2245815
[12] DOI Rodgers, Keith B.; Schwinger, Jörg; Fassbender, Andrea J.; Landschützer, Peter; Yamaguchi, Ryohei; Frenzel, Hartmut; Stein, Karl; Müller, Jens Daniel; Goris, Nadine; Sharma, Sahil; Bushinsky, Seth; Chau, Thi‐Tuyet‐Trang; Gehlen, Marion; Gallego, M. Angeles; Gloege, Lucas; Gregor, Luke; Gruber, Nicolas; Hauck, Judith; Iida, Yosuke; Ishii, Masao; Keppler, Lydia; Kim, Ji‐Eun; Schlunegger, Sarah; Tjiputra, Jerry; Toyama, Katsuya; Vaittinada Ayar, Pradeebane; Velo, Antón. (2023). Seasonal Variability of the Surface Ocean Carbon Cycle: A Synthesis. doi:10.1029/2023gb007798

Is cited by

[1] DOI Tjiputra, Jerry F.; Schwinger, Jörg; Bentsen, Mats; Morée, Anne L.; Gao, Shuang; Bethke, Ingo; Heinze, Christoph; Goris, Nadine; Gupta, Alok; He, Yan-Chun; Olivié, Dirk; Seland, Øyvind; Schulz, Michael. (2020). Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2). doi:10.5194/gmd-13-2393-2020
[2] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[3] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[4] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[5] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[6] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[7] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[8] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[9] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Parent

WCRP CMIP6 CMIP NCC NorESM2-MM
Details

Attached Datasets ( 510 )

Details for selected entry
[Entry acronym: C6_5263293] [Entry id: 5263293]