WCRP CMIP6 CMIP NCAR CESM2 piControl

Danabasoglu, Gokhan et al.

Dataset Group
Summary
These data include all datasets published for 'CMIP6.CMIP.NCAR.CESM2.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CESM2 climate model, released in 2018, includes the following components: aerosol: MAM4 (same grid as atmos), atmos: CAM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 32 levels; top level 2.25 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320x384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean). The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Gokhan Danabasoglu (
 gokhan@nullucar.edu
0000-0003-4676-2732)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1-01-01 to 1201-01-01 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
42.91 TiB (47180400873366 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-05-25
Cite as
Danabasoglu, Gokhan; Lawrence, David; Lindsay, Keith; Lipscomb, William; Strand, Gary (2023). NCAR CESM2 model output prepared for CMIP6 CMIP piControl. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4863368

BibTeX RIS
Funding
Description
as consistent as the model(s) CESM2
Description
All TQA checks were passed for WCRP CMIP6 CMIP NCAR CESM2 piControl.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2024-11-26
Contact typePersonORCIDOrganization
-
-
-

Cites

[1] DOI Danabasoglu, Gokhan. (2017). Community Earth System Model version 2. doi:10.5065/D67H1H0V

Is part of

[1] DOI Danabasoglu, Gokhan; Lawrence, David; Lindsay, Keith; Lipscomb, William; Strand, Gary. (2019). NCAR CESM2 model output prepared for CMIP6 CMIP piControl. doi:10.22033/ESGF/CMIP6.7733

Is referenced by

[1] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B. (2020). Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9
[2] DOI Paulot, Fabien; Naik, Vaishali; W. Horowitz, Larry. (2022). Reduction in Near‐Surface Wind Speeds With Increasing CO2 May Worsen Winter Air Quality in the Indo‐Gangetic Plain. doi:10.1029/2022gl099039
[3] DOI Rogers, Matthew H.; Furtado, Jason; Anderson, Bruce. (2021). The Pacific Decadal Precession and its Relationship to Tropical Pacific Decadal Variability in CMIP6 Models. doi:10.21203/rs.3.rs-390152/v1
[4] DOI Sellevold, Raymond; Vizcaíno, Miren. (2020). Global Warming Threshold and Mechanisms for Accelerated Greenland Ice Sheet Surface Mass Loss. doi:10.1029/2019ms002029
[5] DOI Lambert, F. H.; Challenor, P. G.; Lewis, N. T.; McNeall, D. J.; Owen, N.; Boutle, I. A.; Christensen, H. M.; Keane, R. J.; Mayne, N. J.; Stirling, A.; Webb, M. J. (2020). Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection. doi:10.1029/2020ms002085
[6] DOI Wilcox, Laura J.; Allen, Robert J.; Samset, Bjørn H.; Bollasina, Massimo A.; Griffiths, Paul T.; Keeble, James; Lund, Marianne T.; Makkonen, Risto; Merikanto, Joonas; O'Donnell, Declan; Paynter, David J.; Persad, Geeta G.; Rumbold, Steven T.; Takemura, Toshihiko; Tsigaridis, Kostas; Undorf, Sabine; Westervelt, Daniel M. (2023). The Regional Aerosol Model Intercomparison Project (RAMIP). doi:10.5194/gmd-16-4451-2023
[7] DOI Jönsson, Aiden R.; Bender, Frida A.-M. (2022). The response of hemispheric differences in Earth’s albedo to CO<sub>2</sub> forcing in coupled models and its implications for shortwave radiative feedback strength. doi:10.5194/egusphere-2022-811
[8] DOI Wagner, Wolfgang. (2023). Comment on egusphere-2022-971. doi:10.5194/egusphere-2022-971-rc2
[9] DOI Lai, En Ning; Wang-Erlandsson, Lan; Virkki, Vili; Porkka, Miina; van der Ent, Ruud J. (2022). Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050. doi:10.5194/egusphere-2022-971
[10] DOI Jönsson, Aiden. (2022). Reply on RC1. doi:10.5194/egusphere-2022-811-ac1
[11] DOI Jönsson, Aiden. (2022). Reply on RC2. doi:10.5194/egusphere-2022-811-ac2
[12] DOI van der Ent, Ruud. (2023). Reply on RC3. doi:10.5194/egusphere-2022-971-ac3
[13] DOI van der Ent, Ruud. (2023). Reply on RC2. doi:10.5194/egusphere-2022-971-ac2
[14] DOI van der Ent, Ruud. (2023). Reply on RC1. doi:10.5194/egusphere-2022-971-ac1
[15] DOI Aylmer, Jake R.; Ferreira, David; Feltham, Daniel L. (2024). Impact of ocean heat transport on sea ice captured by a simple energy balance model. doi:10.1038/s43247-024-01565-7
[16] DOI Jackson, Laura Claire; Alastrué de Asenjo, Eduardo; Bellomo, Katinka; Danabasoglu, Gokhan; Haak, Helmuth; Hu, Aixue; Jungclaus, Johann; Lee, Warren; Meccia, Virna L.; Saenko, Oleg; Shao, Andrew; Swingedouw, Didier. (2022). Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project. doi:10.5194/gmd-2022-277

Is documented by

[1] DOI C. M. Bitz, M.M. Holland, M. Eby, and A. J. Weaver. (2015). Simulating the ice-thickness distribution in a coupled climate model. doi:10.1029/1999JC000113
[2] DOI Bitz, C. M.; Holland, M. M.; Weaver, A. J.; Eby, M. (1900). Simulating the ice-thickness distribution in a coupled climate model. doi:10.1029/1999jc000113

Is related to

[1] DOI Rogers, Matthew H.; Furtado, Jason C.; Anderson, Bruce T. (2022). The pacific decadal precession and its relationship to tropical pacific decadal variability in CMIP6 models. doi:10.1007/s00382-021-06114-y
[2] DOI Kim, Hyo-Jeong; An, Soon-Il; Park, Jae-Heung; Sung, Mi-Kyung; Kim, Daehyun; Choi, Yeonju; Kim, Jin-Soo. (2023). North Atlantic Oscillation impact on the Atlantic Meridional Overturning Circulation shaped by the mean state. doi:10.1038/s41612-023-00354-x
[3] DOI Nicknish, Paul A; Chiang, John C H; Hu, Aixue; Boos, William R. (2023). Regional tropical rainfall shifts under global warming: an energetic perspective. doi:10.1088/2752-5295/acb9b0

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[6] DOI Canadell, J.G.; Monteiro, P.M.S; Costa, M.H.; Cotrim da Cunha, L.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; Lohila, A.; Patra, P.K.; Piao, S.; Rogelj, J.; Syampungani, S.; Zaehle, S.; Zickfeld, K. (2023). Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.007
[7] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Parent

WCRP CMIP6 CMIP NCAR CESM2
Details

Attached Datasets ( 964 )

Details for selected entry
[Entry acronym: C6_4863368] [Entry id: 4863368]