WCRP CMIP6 CMIP NCAR CESM2-WACCM historical

Danabasoglu, Gokhan

Dataset Group
Summary
These data include all datasets published for 'CMIP6.CMIP.NCAR.CESM2-WACCM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CESM2-WACCM climate model, released in 2018, includes the following components: aerosol: MAM4 (same grid as atmos), atmos: WACCM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 70 levels; top level 4.5e-06 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320 x 384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean). The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Gary Strand (
 strandwg@nullucar.edu
0000-0001-9740-0104)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-01 to 2015-01-01 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
26.11 TiB (28705157996518 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-05-25
Cite as
Danabasoglu, Gokhan (2023). NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4856224

BibTeX RIS
Funding
Description
as consistent as the model(s) CESM2-WACCM
Description
All TQA checks were passed for WCRP CMIP6 CMIP NCAR CESM2-WACCM historical.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2024-06-25
Contact typePersonORCIDOrganization
-

Is part of

[1] DOI Danabasoglu, Gokhan. (2019). NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical. doi:10.22033/ESGF/CMIP6.10071

Is referenced by

[1] DOI Faye, Aissatou; Akinsanola, Akintomide Afolayan. (2021). Evaluation of extreme precipitation indices over West Africa in CMIP6 models. doi:10.1007/s00382-021-05942-2
[2] DOI Diamond, Michael; Director, Hannah; Eastman, Ryan; Possner, Anna; Wood, Robert. (2019). Substantial Cloud Brightening from Shipping in Subtropical Low Clouds. doi:10.1002/essoar.10501145.1
[3] DOI Zhang, Kequan; Duan, Jiakang; Zhao, Siyi; Zhang, Jiankai; Keeble, James; Liu, Hongwen. (2021). Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. doi:10.1007/s00376-021-0442-2
[4] DOI Cai, Wenju; Yang, Kai; Wu, Lixin; Huang, Gang; Santoso, Agus; Ng, Benjamin; Wang, Guojian; Yamagata, Toshio. (2020). Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. doi:10.1038/s41558-020-00943-1
[5] DOI Su, Xiaole; Wu, Tongwen; Zhang, Jie; Zhang, Yong; Jin, Junli; Zhou, Qing; Zhang, Fang; Liu, Yiming; Zhou, Yumeng; Zhang, Lin; Turnock, Steven T.; Furtado, Kalli. (2022). Present-Day PM2.5 over Asia: Simulation and Uncertainty in CMIP6 ESMs. doi:10.1007/s13351-022-1202-7
[6] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frederic; McKain, Kathryn; Ralph, Keeling; Morgan, Eric; Patra, Prabir K.; Sargent, Maryann; Sweeney, Colm; Keppel-Aleks, Gretchen. (2022). Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1002/essoar.10512001.1
[7] DOI Koven, Charles D.; Arora, Vivek K.; Cadule, Patricia; Fisher, Rosie A.; Jones, Chris D.; Lawrence, David M.; Lewis, Jared; Lindsay, Keith; Mathesius, Sabine; Meinshausen, Malte; Mills, Michael; Nicholls, Zebedee; Sanderson, Benjamin M.; Séférian, Roland; Swart, Neil C.; Wieder, William R.; Zickfeld, Kirsten. (2022). Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. doi:10.5194/esd-13-885-2022
[8] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43
[9] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry. (2022). Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022
[10] DOI Wang, Haolin; Lu, Xiao; Jacob, Daniel J.; Cooper, Owen R.; Chang, Kai-Lan; Li, Ke; Gao, Meng; Liu, Yiming; Sheng, Bosi; Wu, Kai; Wu, Tongwen; Zhang, Jie; Sauvage, Bastien; Nédélec, Philippe; Blot, Romain; Fan, Shaojia. (2022). Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. doi:10.5194/acp-2022-381
[11] DOI Singh, Charu. (2022). Intra-seasonal oscillations of South Asian summer monsoon in coupled climate model cohort CMIP6. doi:10.1007/s00382-022-06323-z
[12] DOI Ngoma, Hamida; Ayugi, Brian; Onyutha, Charles; Babaousmail, Hassen; Sian, Kenny Lim; Iyakaremye, Vedaste; Mumo, Richard; Ongoma, Victor. (2022). Projected Changes in Rainfall Over Uganda Based on CMIP6 Models. doi:10.21203/rs.3.rs-894721/v1
[13] DOI Wang, Shizhu; Wang, Qiang; Wang, Muyin; Lohmann, Gerrit; Qiao, Fangli. (2022). Arctic Ocean Freshwater in CMIP6 Coupled Models. doi:10.1029/2022ef002878
[14] DOI Weijer, W.; Cheng, W.; Garuba, O. A.; Hu, A.; Nadiga, B. T. (2020). CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation. doi:10.1029/2019gl086075
[15] DOI Morgenstern, Olaf; Kinnison, Douglas E.; Mills, Michael; Michou, Martine; Horowitz, Larry W.; Lin, Pu; Deushi, Makoto; Yoshida, Kohei; O’Connor, Fiona M.; Tang, Yongming; Abraham, N. Luke; Keeble, James; Dennison, Fraser; Rozanov, Eugene; Egorova, Tatiana; Sukhodolov, Timofei; Zeng, Guang. (2022). Comparison of Arctic and Antarctic Stratospheric Climates in Chemistry Versus No‐Chemistry Climate Models. doi:10.1029/2022jd037123
[16] DOI Zeng, Guang; Morgenstern, Olaf; Williams, Jonny H. T.; O’Connor, Fiona M.; Griffiths, Paul T.; Keeble, James; Deushi, Makoto; Horowitz, Larry W.; Naik, Vaishali; Emmons, Louisa K.; Abraham, N. Luke; Archibald, Alexander T.; Bauer, Susanne E.; Hassler, Birgit; Michou, Martine; Mills, Michael J.; Murray, Lee T.; Oshima, Naga; Sentman, Lori T.; Tilmes, Simone; Tsigaridis, Kostas; Young, Paul J. (2022). Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models. doi:10.1029/2022jd036452

Is related to

[1] DOI Maliniemi, Ville; Nesse Tyssøy, Hilde; Smith-Johnsen, Christine; Arsenovic, Pavle; Marsh, Daniel R. (2021). Effects of enhanced downwelling of NO&amp;lt;sub&amp;gt;x&amp;lt;/sub&amp;gt; on Antarctic upper-stratospheric ozone in the 21st century. doi:10.5194/acp-21-11041-2021
[2] DOI Wang, Haolin; Lu, Xiao; Jacob, Daniel J.; Cooper, Owen R.; Chang, Kai-Lan; Li, Ke; Gao, Meng; Liu, Yiming; Sheng, Bosi; Wu, Kai; Wu, Tongwen; Zhang, Jie; Sauvage, Bastien; Nédélec, Philippe; Blot, Romain; Fan, Shaojia. (2022). Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. doi:10.5194/acp-22-13753-2022
[3] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard. (2022). Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1029/2022jg007243
[4] DOI Diamond, Michael S.; Director, Hannah M.; Eastman, Ryan; Possner, Anna; Wood, Robert. (2020). Substantial Cloud Brightening From Shipping in Subtropical Low Clouds. doi:10.1029/2019av000111
[5] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frédéric; McKain, Kathryn; Keeling, Ralph F.; Morgan, Eric J.; Patra, Prabir K.; Sargent, Maryann R.; Sweeney, Colm; Keppel‐Aleks, Gretchen. (2023). Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1029/2022gb007520

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[8] DOI Canadell, J.G.; Monteiro, P.M.S; Costa, M.H.; Cotrim da Cunha, L.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; Lohila, A.; Patra, P.K.; Piao, S.; Rogelj, J.; Syampungani, S.; Zaehle, S.; Zickfeld, K. (2023). Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.007
[9] DOI Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; Liao, H.; Unger, N.; Zanis, P. (2023). Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.008
[10] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Parent

WCRP CMIP6 CMIP NCAR CESM2-WACCM
Details

Attached Datasets ( 2999 )

Details for selected entry
[Entry acronym: C6_4856224] [Entry id: 4856224]