WCRP CMIP6 CMIP MOHC HadGEM3-GC31-MM

Ridley, Jeff et al.

Experiment
Summary
These data include all datasets published for 'CMIP6.CMIP.MOHC.HadGEM3-GC31-MM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The HadGEM3-GC3.1-N216ORCA025 climate model, released in 2016, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Jeff Ridley (
 jeff.ridley@nullmetoffice.gov.uk
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-16 to 2349-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
19.82 TiB (21788518080702 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-05-04
Cite as
Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim (2023). MOHC HadGEM3-GC31-MM model output prepared for CMIP6 CMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4660658

BibTeX RIS
Description
as consistent as the model(s) HadGEM3-GC31-MM
Description
All TQA checks were passed for WCRP CMIP6 CMIP MOHC HadGEM3-GC31-MM.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-03-18
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Is part of

[1] DOI Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim. (2019). MOHC HadGEM3-GC31-MM model output prepared for CMIP6 CMIP. doi:10.22033/ESGF/CMIP6.420

Is referenced by

[1] DOI García-Franco, Jorge L.; Gray, Lesley J.; Osprey, Scott. (2020). The American monsoon system in HadGEM3 and UKESM1. doi:10.5194/wcd-1-349-2020
[2] DOI Faye, Aissatou; Akinsanola, Akintomide Afolayan. (2021). Evaluation of extreme precipitation indices over West Africa in CMIP6 models. doi:10.1007/s00382-021-05942-2
[3] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B. (2020). Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9
[4] DOI Lai, W. K. M.; Robson, J. I.; Wilcox, L. J.; Dunstone, N. (2021). Mechanisms of Internal Atlantic Multidecadal Variability in HadGEM3-GC3.1 at Two Different Resolutions. doi:10.1175/jcli-d-21-0281.1
[5] DOI Guarino, Maria-Vittoria; Sime, Louise C.; Schroeder, David; Lister, Grenville M. S.; Hatcher, Rosalyn. (2020). Machine dependence and reproducibility for coupled climate simulations: the HadGEM3-GC3.1 CMIP Preindustrial simulation. doi:10.5194/gmd-13-139-2020
[6] DOI Coelho, Caio A. S.; Baker, Jessica C. A.; Spracklen, Dominick V.; Kubota, Paulo Y.; Souza, Dayana C.; Guimarães, Bruno S.; Figueroa, Silvio N.; Bonatti, José P.; Sampaio, Gilvan; Klingaman, Nicholas P.; Chevuturi, Amulya; Woolnough, Steven J.; Hart, Neil; Zilli, Marcia; Jones, Chris D. (2022). A perspective for advancing climate prediction services in Brazil. doi:10.1002/cli2.29
[7] DOI Rogers, Matthew H.; Furtado, Jason; Anderson, Bruce. (2021). The Pacific Decadal Precession and its Relationship to Tropical Pacific Decadal Variability in CMIP6 Models. doi:10.21203/rs.3.rs-390152/v1
[8] DOI Morgenstern, Olaf; Kinnison, Douglas E.; Mills, Michael; Michou, Martine; Horowitz, Larry W.; Lin, Pu; Deushi, Makoto; Yoshida, Kohei; O’Connor, Fiona M.; Tang, Yongming; Abraham, N. Luke; Keeble, James; Dennison, Fraser; Rozanov, Eugene; Egorova, Tatiana; Sukhodolov, Timofei; Zeng, Guang. (2022). Comparison of Arctic and Antarctic Stratospheric Climates in Chemistry Versus No‐Chemistry Climate Models. doi:10.1029/2022jd037123
[9] DOI Cotterill, Daniel F.; Pope, James O.; Stott, Peter A. (2022). Future Extension Of The UK Summer And Its Impact On Autumn Precipitation. doi:10.21203/rs.3.rs-1427756/v1
[10] DOI Jönsson, A., Bender, F. A. (2022). Persistence and Variability of Earth`s Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. doi:10.1175/jcli-d-20-0970.1
[11] DOI Rogers, Matthew H.; Furtado, Jason C.; Anderson, Bruce T. (2022). The pacific decadal precession and its relationship to tropical pacific decadal variability in CMIP6 models. doi:10.1007/s00382-021-06114-y
[12] DOI Fuso, F.; Stucchi, L.; Bonacina, L.; Fornaroli, R.; Bocchiola, D. (2022). Evaluation of water temperature under changing climate and its effect on river habitat in a regulated Alpine catchment. doi:10.1016/j.jhydrol.2022.128816
[13] DOI Lea, James M.; Fitt, Robert N. L.; Brough, Stephen; Carr, Georgia; Dick, Jonathan; Jones, Natasha; Webster, Richard J. (2024). Making climate reanalysis and CMIP6 data processing easy: two “point-and-click” cloud based user interfaces for environmental and ecological studies. doi:10.3389/fenvs.2024.1294446
[14] DOI Diamond, Rachel; Schroeder, David; Sime, Louise C.; Ridley, Jeff; Feltham, Danny. (2023). The Significance of the Melt-Pond Scheme in a CMIP6 Global Climate Model. doi:10.1175/jcli-d-22-0902.1
[15] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei. (2021). The Brewer–Dobson circulation in CMIP6. doi:10.5194/acp-21-13571-2021
[16] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei. (2021). The Brewer-Dobson circulation in CMIP6. doi:10.5194/acp-2021-206
[17] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan. (2022). Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701
[18] DOI Gerber, Edwin. (2021). Comment on acp-2021-206. doi:10.5194/acp-2021-206-rc2
[19] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa. (2023). Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119
[20] DOI Yu, Qiurun; Huang, Yi. (2023). A Dissection of the Inter-model Spread of the Aerosol Direct Radiative Effect in CMIP6 Models. doi:10.22541/essoar.168771423.33231547/v1
[21] DOI Teodoro, Thales Alves; Reboita, Michelle Simões; Escobar, Gustavo Carlos Juan. (2022). Principais Padrões de Verão da Pressão ao Nível do Mar sobre a Região da América do Sul no Clima Presente e em Projeções Futuras. doi:10.11137/1982-3908_2022_45_40597
[22] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred. (2023). Constraints on simulated past Arctic amplification and lapse rate feedback from observations. doi:10.5194/acp-23-9963-2023
[23] DOI Duffy, Margaret L; O'Gorman, Paul A. (2022). Intermodel spread in Walker circulation responses linked to spread in moist stability and radiation responses. doi:10.22541/essoar.167078790.00035564/v1
[24] DOI Vogel, Annika; Alessa, Ghazi; Scheele, Robert; Weber, Lisa; Dubovik, Oleg; North, Peter; Fiedler, Stephanie. (2022). Uncertainty in Aerosol Optical Depth From Modern Aerosol‐Climate Models, Reanalyses, and Satellite Products. doi:10.1029/2021jd035483
[25] DOI Anand, Aryan; Garg, Vinod Kumar. (2024). Modeling the species occurrence probability and response of climate change on Himalayan Somalata plant under different Shared Socioeconomic Pathways. doi:10.1007/s10661-024-12824-7
[26] DOI Cotterill, Daniel F.; Pope, James O.; Stott, Peter A. (2022). Future extension of the UK summer and its impact on autumn precipitation. doi:10.1007/s00382-022-06403-0
[27] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[28] DOI Abalos, Marta. (2021). Reply to CC1. doi:10.5194/acp-2021-206-ac1
[29] DOI Abalos, Marta. (2021). Reply on CC3. doi:10.5194/acp-2021-206-ac3
[30] DOI Abalos, Marta. (2021). Reply on CC2. doi:10.5194/acp-2021-206-ac2
[31] DOI Baker, Jessica C. A.; Castilho de Souza, Dayana; Kubota, Paulo Y.; Buermann, Wolfgang; Coelho, Caio A. S.; Andrews, Martin B.; Gloor, Manuel; Garcia-Carreras, Luis; Figueroa, Silvio N.; Spracklen, Dominick V. (2021). An Assessment of Land–Atmosphere Interactions over South America Using Satellites, Reanalysis, and Two Global Climate Models. doi:10.1175/jhm-d-20-0132.1
[32] DOI Simpson, Charles; Hosking, J Scott; Mitchell, Dann; Betts, Richard A; Shuckburgh, Emily. (2021). Regional disparities and seasonal differences in climate risk to rice labour. doi:10.1088/1748-9326/ac3288
[33] DOI Sellevold, Raymond; Vizcaino, Miren. (2021). First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. doi:10.1029/2021gl092449
[34] DOI MAKINDE, AKINTUNDE Israel; Abiodun, Babatunde J.; James, Rachel; Washington, Richard; Dyer, Ellen; Webb, Tom. (2022). How Well Do CMIP6 Models Simulate the Influence of the West African Westerly Jet on Sahel Precipitation?. doi:10.21203/rs.3.rs-1274137/v1
[35] DOI Smith, Callum; Robertson, Eddy; Chadwick, Robin; Kelley, Douglas I; Argles, Arthur P K; Coelho, Caio A S; de Souza, Dayana C; Kubota, Paulo Y; Talamoni, Isabela L; Spracklen, Dominick V; Baker, Jessica C A. (2023). Observed and simulated local climate responses to tropical deforestation. doi:10.1088/1748-9326/acf0da
[36] DOI Simpson, Charles; Hosking, J.; Mitchell, Dann; Betts, Richard; Shuckburgh, Emily. (2021). Regional disparities and seasonal differences in climate risk to rice labour. doi:10.31223/x5sw3n
[37] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred. (2023). Constraints on simulated past Arctic amplification and lapse-rate feedback from observations. doi:10.5194/acp-2022-836
[38] DOI PAÇAL, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, Mehmet Levent; Wehner, Michael F; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.22541/essoar.168275876.64237989/v1
[39] DOI Chadwick, Matthew; Sime, Louise C; Allen, Claire S; Guarino, M- Vittoria. (2022). Model-data comparison of Antarctic winter sea-ice extent and Southern Ocean sea-surface temperatures during Marine Isotope Stage 5e. doi:10.22541/essoar.167169856.67933699/v1
[40] DOI Diamond, Rachel; Sime, Louise C.; Holmes, Caroline R.; Schroeder, David. (2024). CMIP6 Models Rarely Simulate Antarctic Winter Sea‐Ice Anomalies as Large as Observed in 2023. doi:10.1029/2024gl109265

Is related to

[1] DOI Turnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Deushi, Makoto; Emmons, Louisa; Good, Peter; Horowitz, Larry; John, Jasmin G.; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivié, Dirk; Oshima, Naga; Schulz, Michael; Sellar, Alistair; Shim, Sungbo; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, Jie. (2020). Historical and future changes in air pollutants from CMIP6 models. doi:10.5194/acp-20-14547-2020
[2] DOI Diamond, Michael; Director, Hannah; Eastman, Ryan; Possner, Anna; Wood, Robert. (2019). Substantial Cloud Brightening from Shipping in Subtropical Low Clouds. doi:10.1002/essoar.10501145.1
[3] DOI Weijer, W.; Cheng, W.; Garuba, O. A.; Hu, A.; Nadiga, B. T. (2020). CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation. doi:10.1029/2019gl086075
[4] DOI Lambert, F. H.; Challenor, P. G.; Lewis, N. T.; McNeall, D. J.; Owen, N.; Boutle, I. A.; Christensen, H. M.; Keane, R. J.; Mayne, N. J.; Stirling, A.; Webb, M. J. (2020). Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection. doi:10.1029/2020ms002085
[5] DOI Diamond, Rachel; Sime, Louise; Schroeder, David; Guarino, Maria-Vittoria. (2021). The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial. doi:10.5194/egusphere-egu21-9239
[6] DOI Sohail, Taimoor; Zika, Jan D.; Irving, Damien B.; Church, John A. (2022). Observed poleward freshwater transport since 1970. doi:10.1038/s41586-021-04370-w
[7] DOI Guarino, Maria-Vittoria; Sime, Louise C.; Schröeder, David; Malmierca-Vallet, Irene; Rosenblum, Erica; Ringer, Mark; Ridley, Jeff; Feltham, Danny; Bitz, Cecilia; Steig, Eric J.; Wolff, Eric; Stroeve, Julienne; Sellar, Alistair. (2020). Sea-ice-free Arctic during the Last Interglacial supports fast future loss. doi:10.1038/s41558-020-0865-2
[8] DOI Diamond, Rachel; Sime, Louise C.; Schroeder, David; Guarino, Maria-Vittoria. (2021). The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial. doi:10.5194/tc-15-5099-2021
[9] DOI Chadwick, M.; Sime, L. C.; Allen, C. S.; Guarino, M.‐V. (2023). Model‐Data Comparison of Antarctic Winter Sea‐Ice Extent and Southern Ocean Sea‐Surface Temperatures During Marine Isotope Stage 5e. doi:10.1029/2022pa004600

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[7] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Attached Dataset Groups ( 5 )

Search on group level...Details for selected entry
[Entry acronym: C6_4660658] [Entry id: 4660658]