Is referenced by
[3] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B.
(2020).
Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9 [4] DOI Lai, W. K. M.; Robson, J. I.; Wilcox, L. J.; Dunstone, N.
(2021).
Mechanisms of Internal Atlantic Multidecadal Variability in HadGEM3-GC3.1 at Two Different Resolutions. doi:10.1175/jcli-d-21-0281.1 [5] DOI Guarino, Maria-Vittoria; Sime, Louise C.; Schroeder, David; Lister, Grenville M. S.; Hatcher, Rosalyn.
(2020).
Machine dependence and reproducibility for coupled climate simulations: the HadGEM3-GC3.1 CMIP Preindustrial simulation. doi:10.5194/gmd-13-139-2020 [6] DOI Coelho, Caio A. S.; Baker, Jessica C. A.; Spracklen, Dominick V.; Kubota, Paulo Y.; Souza, Dayana C.; Guimarães, Bruno S.; Figueroa, Silvio N.; Bonatti, José P.; Sampaio, Gilvan; Klingaman, Nicholas P.; Chevuturi, Amulya; Woolnough, Steven J.; Hart, Neil; Zilli, Marcia; Jones, Chris D.
(2022).
A perspective for advancing climate prediction services in Brazil. doi:10.1002/cli2.29 [7] DOI Rogers, Matthew H.; Furtado, Jason; Anderson, Bruce.
(2021).
The Pacific Decadal Precession and its Relationship to Tropical Pacific Decadal Variability in CMIP6 Models. doi:10.21203/rs.3.rs-390152/v1 [8] DOI Morgenstern, Olaf; Kinnison, Douglas E.; Mills, Michael; Michou, Martine; Horowitz, Larry W.; Lin, Pu; Deushi, Makoto; Yoshida, Kohei; O’Connor, Fiona M.; Tang, Yongming; Abraham, N. Luke; Keeble, James; Dennison, Fraser; Rozanov, Eugene; Egorova, Tatiana; Sukhodolov, Timofei; Zeng, Guang.
(2022).
Comparison of Arctic and Antarctic Stratospheric Climates in Chemistry Versus No‐Chemistry Climate Models. doi:10.1029/2022jd037123 [10] DOI Jönsson, A., Bender, F. A.
(2022).
Persistence and Variability of Earth`s Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. doi:10.1175/jcli-d-20-0970.1 [11] DOI Rogers, Matthew H.; Furtado, Jason C.; Anderson, Bruce T.
(2022).
The pacific decadal precession and its relationship to tropical pacific decadal variability in CMIP6 models. doi:10.1007/s00382-021-06114-y [12] DOI Fuso, F.; Stucchi, L.; Bonacina, L.; Fornaroli, R.; Bocchiola, D.
(2022).
Evaluation of water temperature under changing climate and its effect on river habitat in a regulated Alpine catchment. doi:10.1016/j.jhydrol.2022.128816 [13] DOI Lea, James M.; Fitt, Robert N. L.; Brough, Stephen; Carr, Georgia; Dick, Jonathan; Jones, Natasha; Webster, Richard J.
(2024).
Making climate reanalysis and CMIP6 data processing easy: two “point-and-click” cloud based user interfaces for environmental and ecological studies. doi:10.3389/fenvs.2024.1294446 [14] DOI Diamond, Rachel; Schroeder, David; Sime, Louise C.; Ridley, Jeff; Feltham, Danny.
(2023).
The Significance of the Melt-Pond Scheme in a CMIP6 Global Climate Model. doi:10.1175/jcli-d-22-0902.1 [15] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei.
(2021).
The Brewer–Dobson circulation in CMIP6. doi:10.5194/acp-21-13571-2021 [16] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei.
(2021).
The Brewer-Dobson circulation in CMIP6. doi:10.5194/acp-2021-206 [17] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan.
(2022).
Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701 [19] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa.
(2023).
Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119 [21] DOI Teodoro, Thales Alves; Reboita, Michelle Simões; Escobar, Gustavo Carlos Juan.
(2022).
Principais Padrões de Verão da Pressão ao Nível do Mar sobre a Região da América do Sul no Clima Presente e em Projeções Futuras. doi:10.11137/1982-3908_2022_45_40597 [22] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred.
(2023).
Constraints on simulated past Arctic amplification and lapse rate feedback from observations. doi:10.5194/acp-23-9963-2023 [24] DOI Vogel, Annika; Alessa, Ghazi; Scheele, Robert; Weber, Lisa; Dubovik, Oleg; North, Peter; Fiedler, Stephanie.
(2022).
Uncertainty in Aerosol Optical Depth From Modern Aerosol‐Climate Models, Reanalyses, and Satellite Products. doi:10.1029/2021jd035483 [25] DOI Anand, Aryan; Garg, Vinod Kumar.
(2024).
Modeling the species occurrence probability and response of climate change on Himalayan Somalata plant under different Shared Socioeconomic Pathways. doi:10.1007/s10661-024-12824-7 [27] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika.
(2023).
Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906 [31] DOI Baker, Jessica C. A.; Castilho de Souza, Dayana; Kubota, Paulo Y.; Buermann, Wolfgang; Coelho, Caio A. S.; Andrews, Martin B.; Gloor, Manuel; Garcia-Carreras, Luis; Figueroa, Silvio N.; Spracklen, Dominick V.
(2021).
An Assessment of Land–Atmosphere Interactions over South America Using Satellites, Reanalysis, and Two Global Climate Models. doi:10.1175/jhm-d-20-0132.1 [32] DOI Simpson, Charles; Hosking, J Scott; Mitchell, Dann; Betts, Richard A; Shuckburgh, Emily.
(2021).
Regional disparities and seasonal differences in climate risk to rice labour. doi:10.1088/1748-9326/ac3288 [33] DOI Sellevold, Raymond; Vizcaino, Miren.
(2021).
First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. doi:10.1029/2021gl092449 [34] DOI MAKINDE, AKINTUNDE Israel; Abiodun, Babatunde J.; James, Rachel; Washington, Richard; Dyer, Ellen; Webb, Tom.
(2022).
How Well Do CMIP6 Models Simulate the Influence of the West African Westerly Jet on Sahel Precipitation?. doi:10.21203/rs.3.rs-1274137/v1 [35] DOI Smith, Callum; Robertson, Eddy; Chadwick, Robin; Kelley, Douglas I; Argles, Arthur P K; Coelho, Caio A S; de Souza, Dayana C; Kubota, Paulo Y; Talamoni, Isabela L; Spracklen, Dominick V; Baker, Jessica C A.
(2023).
Observed and simulated local climate responses to tropical deforestation. doi:10.1088/1748-9326/acf0da [36] DOI Simpson, Charles; Hosking, J.; Mitchell, Dann; Betts, Richard; Shuckburgh, Emily.
(2021).
Regional disparities and seasonal differences in climate risk to rice labour. doi:10.31223/x5sw3n [37] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred.
(2023).
Constraints on simulated past Arctic amplification and lapse-rate feedback from observations. doi:10.5194/acp-2022-836 [39] DOI Chadwick, Matthew; Sime, Louise C; Allen, Claire S; Guarino, M- Vittoria.
(2022).
Model-data comparison of Antarctic winter sea-ice extent and Southern Ocean sea-surface temperatures during Marine Isotope Stage 5e. doi:10.22541/essoar.167169856.67933699/v1 [40] DOI Diamond, Rachel; Sime, Louise C.; Holmes, Caroline R.; Schroeder, David.
(2024).
CMIP6 Models Rarely Simulate Antarctic Winter Sea‐Ice Anomalies as Large as Observed in 2023. doi:10.1029/2024gl109265 Is related to
[1] DOI Turnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Deushi, Makoto; Emmons, Louisa; Good, Peter; Horowitz, Larry; John, Jasmin G.; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivié, Dirk; Oshima, Naga; Schulz, Michael; Sellar, Alistair; Shim, Sungbo; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, Jie.
(2020).
Historical and future changes in air pollutants from CMIP6 models. doi:10.5194/acp-20-14547-2020 [2] DOI Diamond, Michael; Director, Hannah; Eastman, Ryan; Possner, Anna; Wood, Robert.
(2019).
Substantial Cloud Brightening from Shipping in Subtropical Low Clouds. doi:10.1002/essoar.10501145.1 [3] DOI Weijer, W.; Cheng, W.; Garuba, O. A.; Hu, A.; Nadiga, B. T.
(2020).
CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation. doi:10.1029/2019gl086075 [4] DOI Lambert, F. H.; Challenor, P. G.; Lewis, N. T.; McNeall, D. J.; Owen, N.; Boutle, I. A.; Christensen, H. M.; Keane, R. J.; Mayne, N. J.; Stirling, A.; Webb, M. J.
(2020).
Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection. doi:10.1029/2020ms002085 [5] DOI Diamond, Rachel; Sime, Louise; Schroeder, David; Guarino, Maria-Vittoria.
(2021).
The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial. doi:10.5194/egusphere-egu21-9239 [7] DOI Guarino, Maria-Vittoria; Sime, Louise C.; Schröeder, David; Malmierca-Vallet, Irene; Rosenblum, Erica; Ringer, Mark; Ridley, Jeff; Feltham, Danny; Bitz, Cecilia; Steig, Eric J.; Wolff, Eric; Stroeve, Julienne; Sellar, Alistair.
(2020).
Sea-ice-free Arctic during the Last Interglacial supports fast future loss. doi:10.1038/s41558-020-0865-2 [8] DOI Diamond, Rachel; Sime, Louise C.; Schroeder, David; Guarino, Maria-Vittoria.
(2021).
The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial. doi:10.5194/tc-15-5099-2021 [9] DOI Chadwick, M.; Sime, L. C.; Allen, C. S.; Guarino, M.‐V.
(2023).
Model‐Data Comparison of Antarctic Winter Sea‐Ice Extent and Southern Ocean Sea‐Surface Temperatures During Marine Isotope Stage 5e. doi:10.1029/2022pa004600 Is cited by
[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y.
(2023).
Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.
Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B.
Zhou (eds.)]. doi:10.1017/9781009157896.011 [2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T.
(2023).
Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006 [3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y.
(2023).
Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005 [4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z.
(2023).
Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012 [5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B.
(2023).
Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013 [6] DOI Intergovernmental Panel on Climate Change (IPCC).
(2023).
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896 [7] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O.
(2023).
Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010