WCRP CMIP6 GMMIP CNRM-CERFACS CNRM-CM6-1

Voldoire, Aurore

Experiment
Summary
These data include all datasets published for 'CMIP6.GMMIP.CNRM-CERFACS.CNRM-CM6-1' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CNRM-CM6-1 climate model, released in 2017, includes the following components: aerosol: prescribed monthly fields computed by TACTIC_v2 scheme, atmos: Arpege 6.3 (T127; Gaussian Reduced with 24572 grid points in total distributed over 128 latitude circles (with 256 grid points per latitude circle between 30degN and 30degS reducing to 20 grid points per latitude circle at 88.9degN and 88.9degS); 91 levels; top level 78.4 km), atmosChem: OZL_v2, land: Surfex 8.0c, ocean: Nemo 3.6 (eORCA1, tripolar primarily 1deg; 362 x 294 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: Gelato 6.1. The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse 31057, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse 31057, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Aurore Voldoire (
 aurore.voldoire@nullmeteo.fr
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1870-01-01 to 2014-12-31 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
501.44 GiB (538422160918 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-04-17
Cite as
Voldoire, Aurore (2023). CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 GMMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4384387

BibTeX RIS
Description
as consistent as the model(s) CNRM-CM6-1
Description
All TQA checks were passed for WCRP CMIP6 GMMIP CNRM-CERFACS CNRM-CM6-1.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-03-19
Contact typePersonORCIDOrganization
-
-

Is part of

[1] DOI Voldoire, Aurore. (2019). CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 GMMIP. doi:10.22033/ESGF/CMIP6.1379

Is referenced by

[1] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal. (2022). Should multivariate bias corrections of climate simulations account for changes of rank correlation over time?. doi:10.1002/essoar.10510318.1
[2] DOI Fritz, Manuela. (2022). Temperature and non‐communicable diseases: Evidence from Indonesia's primary health care system. doi:10.1002/hec.4590
[3] DOI Cook, B. I.; Mankin, J. S.; Marvel, K.; Williams, A. P.; Smerdon, J. E.; Anchukaitis, K. J. (2020). Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios. doi:10.1029/2019ef001461
[4] DOI Pantović, Jovana P.; Božović, Djordje P.; Sabovljević, Marko S. (2023). Possible Effects of Climate Change on the Occurrence and Distribution of the Rare Moss Buxbaumia viridis in Serbia (SE Europe). doi:10.3390/plants12030557
[5] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred. (2023). Constraints on simulated past Arctic amplification and lapse rate feedback from observations. doi:10.5194/acp-23-9963-2023
[6] DOI Vautard, Robert; van Oldenborgh, Geert Jan; Bonnet, Rémy; Li, Sihan; Robin, Yoann; Kew, Sarah; Philip, Sjoukje; Soubeyroux, Jean-Michel; Dubuisson, Brigitte; Viovy, Nicolas; Reichstein, Markus; Otto, Friederike; Garcia de Cortazar-Atauri, Iñaki. (2023). Human influence on growing-period frosts like in early April 2021 in central France. doi:10.5194/nhess-23-1045-2023
[7] DOI Hsu, Hsin; Dirmeyer, Paul A. (2023). Uncertainty in projected critical soil moisture values in CMIP6 affects the interpretation of a more moisture-limited world. doi:10.22541/essoar.167810145.51830543/v1
[8] DOI Vautard, Robert; van Oldenborgh, Geert Jan; Bonnet, Rémy; Li, Sihan; Robin, Yoann; Kew, Sarah; Philip, Sjoukje; Soubeyroux, Jean-Michel; Dubuisson, Brigitte; Viovy, Nicolas; Reichstein, Markus; Otto, Friederike; Garcia de Cortazar-Atauri, Iñaki. (2022). Human influence on growing-period frosts like the early April 2021 in Central France. doi:10.5194/nhess-2022-41
[9] DOI Sun, Zhe; Archibald, Alexander. (2021). Multi-stage Ensemble-learning-based Model Fusion for Surface Ozone Simulations: A Focus on CMIP6 Models. doi:10.1002/essoar.10507571.1
[10] DOI Ge, Xuezhen; Newman, Jonathan A.; Griswold, Cortland K. (2024). Geographic variation in evolutionary rescue under climate change in a crop pest–predator system. doi:10.1111/eva.13750
[11] DOI Hsu, Hsin; Dirmeyer, Paul A. (2023). Uncertainty in Projected Critical Soil Moisture Values in CMIP6 Affects the Interpretation of a More Moisture‐Limited World. doi:10.1029/2023ef003511
[12] DOI Semenov, Mikhail A.; Senapati, Nimai; Coleman, Kevin; Collins, Adrian L. (2024). A dataset of CMIP6-based climate scenarios for climate change impact assessment in Great Britain. doi:10.1016/j.dib.2024.110709
[13] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred. (2023). Constraints on simulated past Arctic amplification and lapse-rate feedback from observations. doi:10.5194/acp-2022-836

Is related to

[1] DOI Lange, Stefan; Büchner, Matthias. (2022). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124
[2] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[3] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal. (2022). Changes in temperature–precipitation correlations over Europe: are climate models reliable?. doi:10.1007/s00382-022-06436-5
[4] DOI Yiou, Pascal; Faranda, Davide; Thao, Soulivanh; Vrac, Mathieu. (2021). Projected Changes in the Atmospheric Dynamics of Climate Extremes in France. doi:10.3390/atmos12111440
[5] DOI Liu, Meng; Yang, Linqing. (2022). Northward expansion of fire-adaptative vegetation in future warming. doi:10.1088/1748-9326/ac417d
[6] DOI Lange, Stefan; Quesada-Chacón, Dánnell; Büchner, Matthias. (2023). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.2
[7] DOI Sohail, Taimoor; Zika, Jan D.; Irving, Damien B.; Church, John A. (2022). Observed poleward freshwater transport since 1970. doi:10.1038/s41586-021-04370-w
[8] DOI Duffy, Margaret L.; O’Gorman, Paul A. (2022). Intermodel Spread in Walker Circulation Responses Linked to Spread in Moist Stability and Radiation Responses. doi:10.1029/2022jd037382
[9] DOI Duffy, Margaret L; O'Gorman, Paul A. (2022). Intermodel spread in Walker circulation responses linked to spread in moist stability and radiation responses. doi:10.22541/essoar.167078790.00035564/v1
[10] DOI Vrac, M.; Thao, S.; Yiou, P. (2022). Should Multivariate Bias Corrections of Climate Simulations Account for Changes of Rank Correlation Over Time?. doi:10.1029/2022jd036562
[11] DOI Lange, Stefan; Quesada-Chacón, Dánnell; Büchner, Matthias. (2023). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.3

Is cited by

[1] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[2] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896

Attached Dataset Groups ( 1 )

Search on group level...Details for selected entry
[Entry acronym: C6_4384387] [Entry id: 4384387]