WCRP CMIP6 FAFMIP CCCma CanESM5

Swart, Neil Cameron et al.

Experiment
Summary
These data include all datasets published for 'CMIP6.FAFMIP.CCCma.CanESM5' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CanESM5 climate model, released in 2019, includes the following components: aerosol: interactive, atmos: CanAM5 (T63L49 native atmosphere, T63 Linear Gaussian Grid; 128 x 64 longitude/latitude; 49 levels; top level 1 hPa), atmosChem: specified oxidants for aerosols, land: CLASS3.6/CTEM1.2, landIce: specified ice sheets, ocean: NEMO3.4.1 (ORCA1 tripolar grid, 1 deg with refinement to 1/3 deg within 20 degrees of the equator; 361 x 290 longitude/latitude; 45 vertical levels; top grid cell 0-6.19 m), ocnBgchem: Canadian Model of Ocean Carbon (CMOC); NPZD ecosystem with OMIP prescribed carbonate chemistry, seaIce: LIM2. The model was run by the Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC V8P 5C2, Canada (CCCma) in native nominal resolutions: aerosol: 500 km, atmos: 500 km, atmosChem: 500 km, land: 500 km, landIce: 500 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Neil Cameron Swart (
 neil.swart@nullcanada.ca
0000-0002-8200-6187)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
5550-01-16 to 5650-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
765.87 GiB (822341286825 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-04-14
Cite as
Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael (2023). CCCma CanESM5 model output prepared for CMIP6 FAFMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4136846

BibTeX RIS
Description
as consistent as the model(s) CanESM5
Description
All TQA checks were passed for WCRP CMIP6 FAFMIP CCCma CanESM5.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-01-07
Contact typePersonORCIDOrganization
-
-
-
-
-
-

Is part of

[1] DOI Swart, Neil Cameron; Cole, Jason N.S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara; Sigmond, Michael. (2019). CCCma CanESM5 model output prepared for CMIP6 FAFMIP. doi:10.22033/ESGF/CMIP6.1308

Is referenced by

[1] DOI Burke, Eleanor J.; Zhang, Yu; Krinner, Gerhard. (2020). Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. doi:10.5194/tc-14-3155-2020
[2] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James R.; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Santana-Falcón, Yeray; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. doi:10.5194/bg-17-3439-2020
[3] DOI Kravitz, Ben; MacMartin, Douglas G.; Visioni, Daniele; Boucher, Olivier; Cole, Jason N. S.; Haywood, Jim; Jones, Andy; Lurton, Thibaut; Nabat, Pierre; Niemeier, Ulrike; Robock, Alan; Séférian, Roland; Tilmes, Simone. (2020). Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). doi:10.5194/acp-2020-732
[4] DOI Faye, Aissatou; Akinsanola, Akintomide Afolayan. (2021). Evaluation of extreme precipitation indices over West Africa in CMIP6 models. doi:10.1007/s00382-021-05942-2
[5] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B. (2020). Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9
[6] DOI Hannachi, Abdel; Finke, Kathrin; Trendafilov, Nickolay. (2022). Common EOFs: a tool for multi-model comparison and evaluation. doi:10.1007/s00382-022-06409-8
[7] DOI Cai, Wenju; Yang, Kai; Wu, Lixin; Huang, Gang; Santoso, Agus; Ng, Benjamin; Wang, Guojian; Yamagata, Toshio. (2020). Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. doi:10.1038/s41558-020-00943-1
[8] DOI Ayodele, Adigun Paul; Precious, Ebiendele Eromosele; Brhane, Ermias Sisay; Seun, Adawa Ifeoluwa. (2022). CMIP6 multi-model evaluation of summer extreme precipitation over East Asia. doi:10.1007/s40808-022-01433-3
[9] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frederic; McKain, Kathryn; Ralph, Keeling; Morgan, Eric; Patra, Prabir K.; Sargent, Maryann; Sweeney, Colm; Keppel-Aleks, Gretchen. (2022). Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1002/essoar.10512001.1
[10] DOI Liu, Jingchen; Guan, Xiaodan; Gao, Zhaokui; Huang, Xiaoqian; Ma, Jieru; He, Yongli; Xie, Tiejun. (2021). Inter-decadal variability of the heat source over the Tibetan Plateau. doi:10.1007/s00382-021-05929-z
[11] DOI Rogers, Matthew H.; Furtado, Jason C.; Anderson, Bruce T. (2022). The pacific decadal precession and its relationship to tropical pacific decadal variability in CMIP6 models. doi:10.1007/s00382-021-06114-y
[12] DOI Rivera, Paris. (2022). Evaluation of Historical Simulations of CMIP6 Models for Temperature and Precipitation in Guatemala. doi:10.1007/s41748-022-00333-x
[13] DOI Han, Pengfei; Long, Di; Zhao, Fanyu; Slater, Louise J. (2023). Response of Two Glaciers in Different Climate Settings of the Tibetan Plateau to Climate Change Through Year 2100 Using a Hybrid Modeling Approach. doi:10.1029/2022wr033618
[14] DOI Karmouche, Soufiane; Galytska, Evgenia; Runge, Jakob; Meehl, Gerald A.; Phillips, Adam S.; Weigel, Katja; Eyring, Veronika. (2022). Regime-oriented causal model evaluation of Atlantic-Pacific teleconnections in CMIP6. doi:10.5194/egusphere-2022-1013
[15] DOI Kunchala, Ravi Kumar; Attada, Raju; Karumuri, Rama Krishna; Seelanki, Vivek; Singh, Bhupendra Bahadur; Ashok, Karumuri; Hoteit, Ibrahim. (2022). Aerosol Optical Depth over the Middle East and North Africa region in CMIP6 Models: Climatology, Variability, and Trends. doi:10.21203/rs.3.rs-1903026/v1
[16] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan. (2022). Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701
[17] DOI Çetin, I. I.; Yücel, I.; Yılmaz, M. T.; Önol, B. (2024). Historical variability of Coupled Model Intercomparison Project Version 6 (CMIP6)-driven surface winds and global reanalysis data for the Eastern Mediterranean. doi:10.1007/s00704-024-04869-y
[18] DOI Jönsson, Aiden R.; Bender, Frida A.-M. (2022). The response of hemispheric differences in Earth’s albedo to CO<sub>2</sub> forcing in coupled models and its implications for shortwave radiative feedback strength. doi:10.5194/egusphere-2022-811
[19] DOI Srinivasulu, Aditya; Assefa, Alembrhan; Srinivasulu, Chelmala. (2021). Ecological niche modelling predicts significant impacts of future climate change on two endemic rodents in eastern Africa. doi:10.11609/jott.6715.13.5.18164-18176
[20] DOI Papalexiou, Simon Michael; Rajulapati, Chandra Rupa; Andreadis, Konstantinos M.; Foufoula‐Georgiou, Efi; Clark, Martyn P.; Trenberth, Kevin E. (2021). Probabilistic Evaluation of Drought in CMIP6 Simulations. doi:10.1029/2021ef002150
[21] DOI Rodríguez-Montes, María; Ayarzagüena, Blanca; Guijarro, María. (2022). Polar night jet characterization through artificial intelligence. doi:10.1016/j.cageo.2022.105176
[22] DOI Shukla, Krishna Kumar; Attada, Raju. (2023). CMIP6 models informed summer human thermal discomfort conditions in Indian regional hotspot. doi:10.1038/s41598-023-38602-y
[23] DOI Kreienkamp, Frank; Lorenz, Philip; Geiger, Tobias. (2020). Statistically Downscaled CMIP6 Projections Show Stronger Warming for Germany. doi:10.3390/atmos11111245
[24] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa. (2023). Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119
[25] DOI Ayarzagüena, Blanca; Charlton-Pérez, Andrew J.; Butler, Amy H.; Hitchcock, Peter; Simpson, Isla R.; Polvani, Lorenzo M.; Butchart, Neal; Gerber, Edwin P.; Gray, Lesley; Hassler, Birgit; Lin, Pu; Lott, François; Manzini, Elisa; Mizuta, Ryo; Orbe, Clara; Osprey, Scott; Saint-Martin, David; Sigmond, Michael; Taguchi, Masakazu; Volodin, Evgeny; DynVarMIP-SSW. (2020). Uncertainty in the response of sudden stratospheric warmings and stratosphere- troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. doi:10.5194/egusphere-egu2020-11839
[26] DOI Duffy, Margaret L; O'Gorman, Paul A. (2022). Intermodel spread in Walker circulation responses linked to spread in moist stability and radiation responses. doi:10.22541/essoar.167078790.00035564/v1
[27] DOI Jönsson, Aiden. (2022). Reply on RC1. doi:10.5194/egusphere-2022-811-ac1
[28] DOI Jönsson, Aiden. (2022). Reply on RC2. doi:10.5194/egusphere-2022-811-ac2
[29] DOI Wong, Suki Cheuk-Kiu; McKinley, Galen A; Seager, Richard. (2022). Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1002/essoar.10512730.1
[30] DOI Blanchet, Cécile L.; Ramisch, Arne; Tjallingii, Rik; Ionita, Monica; Laruelle, Louison; Bagge, Meike; Klemann, Volker; Brauer, Achim. (2024). Climatic pacing of extreme Nile floods during the North African Humid Period. doi:10.1038/s41561-024-01471-9
[31] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[32] DOI Zhang, Le; Xue, Z. George. (2022). A Numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean. doi:10.5194/bg-19-4589-2022
[33] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper ocean nutrient decline from CMIP6 model projections. doi:10.5194/bg-2020-16
[34] DOI Bhattacharya, Biswarup; Mohanty, Sachiko; Singh, Charu. (2022). Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean. doi:10.1007/s00704-022-03952-6

References

[1] DOI Swart, Neil C.; Cole, Jason N. S.; Kharin, Viatcheslav V.; Lazare, Mike; Scinocca, John F.; Gillett, Nathan P.; Anstey, James; Arora, Vivek; Christian, James R.; Hanna, Sarah; Jiao, Yanjun; Lee, Warren G.; Majaess, Fouad; Saenko, Oleg A.; Seiler, Christian; Seinen, Clint; Shao, Andrew; Solheim, Larry; von Salzen, Knut; Yang, Duo; Winter, Barbara. (2019). The Canadian Earth System Model version 5 (CanESM5.0.3). doi:10.5194/gmd-2019-177

Is related to

[1] DOI Lange, Stefan; Büchner, Matthias. (2022). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.1
[2] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[3] DOI Lange, Stefan; Quesada-Chacón, Dánnell; Büchner, Matthias. (2023). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.2
[4] DOI Sohail, Taimoor; Zika, Jan D.; Irving, Damien B.; Church, John A. (2022). Observed poleward freshwater transport since 1970. doi:10.1038/s41586-021-04370-w
[5] DOI Cao, Ruyin; Ling, Xiaofang; Liu, Licong; Wang, Weiyi; Li, Luchun; Shen, Miaogen. (2023). Remotely Sensed Vegetation Green-Up Onset Date on the Tibetan Plateau: Simulations and Future Predictions. doi:10.1109/jstars.2023.3310617

Attached Dataset Groups ( 8 )

Search on group level...Details for selected entry
[Entry acronym: C6_4136846] [Entry id: 4136846]