Is referenced by
[1] DOI Burke, Eleanor J.; Zhang, Yu; Krinner, Gerhard.
(2020).
Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. doi:10.5194/tc-14-3155-2020 [2] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James R.; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Santana-Falcón, Yeray; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo.
(2020).
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. doi:10.5194/bg-17-3439-2020 [3] DOI Kravitz, Ben; MacMartin, Douglas G.; Visioni, Daniele; Boucher, Olivier; Cole, Jason N. S.; Haywood, Jim; Jones, Andy; Lurton, Thibaut; Nabat, Pierre; Niemeier, Ulrike; Robock, Alan; Séférian, Roland; Tilmes, Simone.
(2020).
Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). doi:10.5194/acp-2020-732 [5] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B.
(2020).
Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9 [7] DOI Cai, Wenju; Yang, Kai; Wu, Lixin; Huang, Gang; Santoso, Agus; Ng, Benjamin; Wang, Guojian; Yamagata, Toshio.
(2020).
Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. doi:10.1038/s41558-020-00943-1 [8] DOI Ayodele, Adigun Paul; Precious, Ebiendele Eromosele; Brhane, Ermias Sisay; Seun, Adawa Ifeoluwa.
(2022).
CMIP6 multi-model evaluation of summer extreme precipitation over East Asia. doi:10.1007/s40808-022-01433-3 [9] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frederic; McKain, Kathryn; Ralph, Keeling; Morgan, Eric; Patra, Prabir K.; Sargent, Maryann; Sweeney, Colm; Keppel-Aleks, Gretchen.
(2022).
Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1002/essoar.10512001.1 [10] DOI Liu, Jingchen; Guan, Xiaodan; Gao, Zhaokui; Huang, Xiaoqian; Ma, Jieru; He, Yongli; Xie, Tiejun.
(2021).
Inter-decadal variability of the heat source over the Tibetan Plateau. doi:10.1007/s00382-021-05929-z [11] DOI Rogers, Matthew H.; Furtado, Jason C.; Anderson, Bruce T.
(2022).
The pacific decadal precession and its relationship to tropical pacific decadal variability in CMIP6 models. doi:10.1007/s00382-021-06114-y [13] DOI Han, Pengfei; Long, Di; Zhao, Fanyu; Slater, Louise J.
(2023).
Response of Two Glaciers in Different Climate Settings of the Tibetan Plateau to Climate Change Through Year 2100 Using a Hybrid Modeling Approach. doi:10.1029/2022wr033618 [14] DOI Karmouche, Soufiane; Galytska, Evgenia; Runge, Jakob; Meehl, Gerald A.; Phillips, Adam S.; Weigel, Katja; Eyring, Veronika.
(2022).
Regime-oriented causal model evaluation of Atlantic-Pacific teleconnections in CMIP6. doi:10.5194/egusphere-2022-1013 [15] DOI Kunchala, Ravi Kumar; Attada, Raju; Karumuri, Rama Krishna; Seelanki, Vivek; Singh, Bhupendra Bahadur; Ashok, Karumuri; Hoteit, Ibrahim.
(2022).
Aerosol Optical Depth over the Middle East and North Africa region in CMIP6 Models: Climatology, Variability, and Trends. doi:10.21203/rs.3.rs-1903026/v1 [16] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan.
(2022).
Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701 [17] DOI Çetin, I. I.; Yücel, I.; Yılmaz, M. T.; Önol, B.
(2024).
Historical variability of Coupled Model Intercomparison Project Version 6 (CMIP6)-driven surface winds and global reanalysis data for the Eastern Mediterranean. doi:10.1007/s00704-024-04869-y [18] DOI Jönsson, Aiden R.; Bender, Frida A.-M.
(2022).
The response of hemispheric differences in Earth’s albedo to CO<sub>2</sub> forcing in coupled models and its implications for shortwave radiative feedback strength. doi:10.5194/egusphere-2022-811 [19] DOI Srinivasulu, Aditya; Assefa, Alembrhan; Srinivasulu, Chelmala.
(2021).
Ecological niche modelling predicts significant impacts of future climate change on two endemic rodents in eastern Africa. doi:10.11609/jott.6715.13.5.18164-18176 [20] DOI Papalexiou, Simon Michael; Rajulapati, Chandra Rupa; Andreadis, Konstantinos M.; Foufoula‐Georgiou, Efi; Clark, Martyn P.; Trenberth, Kevin E.
(2021).
Probabilistic Evaluation of Drought in CMIP6 Simulations. doi:10.1029/2021ef002150 [23] DOI Kreienkamp, Frank; Lorenz, Philip; Geiger, Tobias.
(2020).
Statistically Downscaled CMIP6 Projections Show Stronger Warming for Germany. doi:10.3390/atmos11111245 [24] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa.
(2023).
Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119 [25] DOI Ayarzagüena, Blanca; Charlton-Pérez, Andrew J.; Butler, Amy H.; Hitchcock, Peter; Simpson, Isla R.; Polvani, Lorenzo M.; Butchart, Neal; Gerber, Edwin P.; Gray, Lesley; Hassler, Birgit; Lin, Pu; Lott, François; Manzini, Elisa; Mizuta, Ryo; Orbe, Clara; Osprey, Scott; Saint-Martin, David; Sigmond, Michael; Taguchi, Masakazu; Volodin, Evgeny; DynVarMIP-SSW.
(2020).
Uncertainty in the response of sudden stratospheric warmings and stratosphere- troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. doi:10.5194/egusphere-egu2020-11839 [30] DOI Blanchet, Cécile L.; Ramisch, Arne; Tjallingii, Rik; Ionita, Monica; Laruelle, Louison; Bagge, Meike; Klemann, Volker; Brauer, Achim.
(2024).
Climatic pacing of extreme Nile floods during the North African Humid Period. doi:10.1038/s41561-024-01471-9 [31] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika.
(2023).
Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906 [32] DOI Zhang, Le; Xue, Z. George.
(2022).
A Numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean. doi:10.5194/bg-19-4589-2022 [33] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo.
(2020).
Twenty-first century ocean warming, acidification, deoxygenation, and upper ocean nutrient decline from CMIP6 model projections. doi:10.5194/bg-2020-16 [34] DOI Bhattacharya, Biswarup; Mohanty, Sachiko; Singh, Charu.
(2022).
Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean. doi:10.1007/s00704-022-03952-6