WRCPPCMDIBADCWDCC

DOI for 'CMIP6.CMIP.INM.INM-CM5-0.piControl'

doi:10.22033/ESGF/CMIP6.5081

Name
CMIP6.CMIP.INM.INM-CM5-0.piControl
Abstract
Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets.
These data include all datasets published for 'CMIP6.CMIP.INM.INM-CM5-0.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.

The INM-CM5-0 climate model, released in 2016, includes the following components:
aerosol: INM-AER1, atmos: INM-AM5-0 (2x1.5; 180 x 120 longitude/latitude; 73 levels; top level sigma = 0.0002), land: INM-LND1, ocean: INM-OM5 (North Pole shifted to 60N, 90E. 0.5x0.25; 720 x 720 longitude/latitude; 40 levels; vertical sigma coordinate), seaIce: INM-ICE1.
The model was run by the Institute for Numerical Mathematics, Russian Academy of Science, Moscow 119991, Russia (INM) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).

CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).

The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
Subjects
CMIP6.CMIP.INM.INM-CM5-0.piControl (DRS: http://github.com/WCRP-CMIP/CMIP6_CVs)
CMIP6
climate
Rights
Creative Commons Attribution 4.0 International License (CC BY 4.0)
License
CMIP6 model data is evolving, new versions are added when datasets are changed or additions are made. Cite this data collection according to the Data Citation Guidelines (http://bit.ly/2gBCuqM) and be sure to include the version number (e.g. v20210101). Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated. - Here is the history of licenses governing these datasets: 2019-06-10: initially published under CC BY-SA 4.0; 2022-09-27: relaxed to CC BY 4.0
Contacts
Volodin, Evgeny
 volodinev@nullgmail.com
Funders
Institute of Numerical Mathematics (INM)
Cite as
Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana (2019). INM INM-CM5-0 model output prepared for CMIP6 CMIP piControl. Version YYYYMMDD[1].Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5081

BibTeX RIS
[1] Please use the latest dataset version or if not available the latest data download date as version in your data citation.

Data Access

https://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=CMIP&institution_id=INM&source_id=INM-CM5-0&experiment_id=piControl
http://esgf-node.llnl.gov/search/cmip6/?mip_era=CMIP6&activity_id=CMIP&institution_id=INM&source_id=INM-CM5-0&experiment_id=piControl

Related Data

INM INM-CM5-0 model output prepared for CMIP6 CMIP
Show

Metadata Export

XMLJSON
#NamePIDAffiliation
1Volodin, Evgeny-Institute of Numerical Mathematics
2Mortikov, Evgeny-Moscow State University
3Gritsun, Andrey-Institute of Numerical Mathematics
4Lykossov, Vasily-Moscow State University
5Galin, Vener-Institute of Numerical Mathematics
6Diansky, Nikolay-Moscow State University
7Gusev, Anatoly-Institute of Numerical Mathematics
8Kostrykin, Sergey-Institute of Numerical Mathematics
9Iakovlev, Nikolay-Institute of Numerical Mathematics
10Shestakova, Anna-Moscow State University
11Emelina, Svetlana-Hydrometcenter of Russia
#NamePIDAffiliation
1Institute of Numerical Mathematics (INM)--
IsCitedBy  Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y.. DOI:10.1017/9781009157896.011
IsCitedBy  Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T.. DOI:10.1017/9781009157896.006
IsCitedBy  Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y.. DOI:10.1017/9781009157896.005
IsCitedBy  Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z.. DOI:10.1017/9781009157896.012
IsCitedBy  Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Intergovernmental Panel on Climate Change (IPCC). DOI:10.1017/9781009157896
IsReferencedBy  Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B.. DOI:10.1038/s41558-020-00957-9
IsReferencedBy  Thermal bioclimatic indicators over Southeast Asia: present status and future projection using CMIP6. Hamed, Mohammed Magdy; Nashwan, Mohamed Salem; Shahid, Shamsuddin; Ismail, Tarmizi bin; Dewan, Ashraf; Asaduzzaman, Md. DOI:10.1007/s11356-022-22036-6
IsReferencedBy  Characteristic changes in climate projections over Indus Basin using the bias corrected CMIP6 simulations. Koteswara Rao, K.; Lakshmi Kumar, T. V.; Kulkarni, Ashwini; Chowdary, Jasti S.; Desamsetti, Srinivas. DOI:10.1007/s00382-021-06108-w
IsReferencedBy  Evaluation and multimodel projection of seasonal precipitation extremes over central Asia based on CMIP6 simulations. Dike, Victor Nnamdi; Lin, Zhaohui; Fei, Kece; Langendijk, Gaby S.; Nath, Debashis. DOI:10.1002/joc.7641
IsReferencedBy  Projected wind changes in the Caribbean Sea based on CMIP6 models. Bustos Usta, David Francisco; Torres Parra, Rafael Ricardo. DOI:10.1007/s00382-022-06535-3
IsReferencedBy  Reduction in Near‐Surface Wind Speeds With Increasing CO2 May Worsen Winter Air Quality in the Indo‐Gangetic Plain. Paulot, Fabien; Naik, Vaishali; W. Horowitz, Larry. DOI:10.1029/2022gl099039
IsCitedBy  Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O.. DOI:10.1017/9781009157896.010
IsReferencedBy  Trivariate frequency analysis of droughts using copulas under future climate change over Vidarbha region in India. Datta, Rajarshi; Reddy, Manne Janga. DOI:10.1007/s00477-023-02484-3
IsReferencedBy  Regime-oriented causal model evaluation of Atlantic-Pacific teleconnections in CMIP6. Karmouche, Soufiane; Galytska, Evgenia; Runge, Jakob; Meehl, Gerald A.; Phillips, Adam S.; Weigel, Katja; Eyring, Veronika. DOI:10.5194/egusphere-2022-1013
IsReferencedBy  Assessment of temperature changes over Iran during the twenty-first century using CMIP6 models under SSP1-26, SSP2-4.5, and SSP5-8.5 scenarios. Usta, David Francisco Bustos; Teymouri, Maryam; Chatterjee, Uday. DOI:10.1007/s12517-022-09709-9
IsRelatedTo  Multi-decadal variation of ENSO forecast skill since the late 1800s. Lou, ‪Jiale; Newman, Matthew; Hoell, Andrew. DOI:10.21203/rs.3.rs-2544766/v1
IsRelatedTo  CMIP6 models informed summer human thermal discomfort conditions in Indian regional hotspot. Shukla, Krishna Kumar; Attada, Raju. DOI:10.1038/s41598-023-38602-y
IsReferencedBy  Reply on RC2. Karmouche, Soufiane. DOI:10.5194/egusphere-2022-1013-ac2
IsRelatedTo  Ensemble of CMIP6 derived reference and potential evapotranspiration with radiative and advective components. Bjarke, Nels; Barsugli, Joseph; Livneh, Ben. DOI:10.1038/s41597-023-02290-0
IsReferencedBy  Deep learning downscaled high-resolution daily near surface meteorological datasets over East Asia. Lin, Hai; Tang, Jianping; Wang, Shuyu; Wang, Shuguang; Dong, Guangtao. DOI:10.1038/s41597-023-02805-9
IsReferencedBy  Reply on RC1. Karmouche, Soufiane. DOI:10.5194/egusphere-2022-1013-ac1
IsRelatedTo  North Atlantic Oscillation impact on the Atlantic Meridional Overturning Circulation shaped by the mean state. Kim, Hyo-Jeong; An, Soon-Il; Park, Jae-Heung; Sung, Mi-Kyung; Kim, Daehyun; Choi, Yeonju; Kim, Jin-Soo. DOI:10.1038/s41612-023-00354-x
IsRelatedTo  Indian heatwaves in a future climate with varying hazard thresholds. Rao, K Koteswara; Jyoteeshkumar Reddy, P; Chowdary, Jasti S. DOI:10.1088/2752-5295/acb077
IsReferencedBy  Climate change projections over Indus basin using CMIP6 model simulations. KUNDETI, KOTESWARARAO; T.V, Lakshmi Kumar; Kulkarni, Ashwini; J.S, Chowdary; Desamsetti, Srinivas. DOI:10.21203/rs.3.rs-365154/v1
IsReferencedBy  Multi-decadal variation of ENSO forecast skill since the late 1800s. Lou, Jiale; Newman, Matthew; Hoell, Andrew. DOI:10.1038/s41612-023-00417-z
IsReferencedBy  Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6. Karmouche, Soufiane; Galytska, Evgenia; Runge, Jakob; Meehl, Gerald A.; Phillips, Adam S.; Weigel, Katja; Eyring, Veronika. DOI:10.5194/esd-14-309-2023
IsReferencedBy  INTRAGRO: A machine learning approach to predict future growth of trees under climate change. Aryal, Sugam; Grießinger, Jussi; Dyola, Nita; Gaire, Narayan Prasad; Bhattarai, Tribikram; Bräuning, Achim. DOI:10.1002/ece3.10626