Modelled non-stationary kilometer-scale hourly precipitation extremes of a 100-year event under 2 GWL scenarios for Germany

doi:10.26050/WDCC/PrecExtr100yr

Laux, Patrick

ExperimentDOI
Summary
Given the importance of sub-daily extreme precipitation events for the occurrence of pluvial floods, it is a key component in climate change adaptation to quantify the likelihood of such extreme events under current and future climate conditions. Such assessments are usually limited by a lack of sufficiently dense and sub-daily precipitation observations, (ii) high-resolution convection-permitting regional climate model (CPM) simulations that realistically represent sub-daily precipitation extremes, and (iii) statistical methods that allow us to extrapolate extreme precipitation return levels under limited data availability and non-stationary conditions (i.e., climate change) based on the main governing physical processes.
We overcome these constraints through the utilization of kilometer-scale hourly radar precipitation estimates (RADKLIM) and spatially disaggregated observed daily temperature data (HYRAS-DE-TAS), and the implementation of a novel CPM ensemble covering the entirety of Germany, obtained from the NUKLEUS project within the BMBF-funded RegIKlim (Regionale Information zum Klimahandeln) initiative. Additionally, we introduce the Temperature-dependent Non-Asymptotic statistical model for eXtreme return levels (TENAX) model, a new approach that integrates daily temperature as a covariate, aligning with observed Clausius-Clapeyron scaling rates. This innovation results in a groundbreaking dataset of hourly extreme precipitation for Germany, marking the first instance of accounting for non-stationary climate conditions, i.e., in a +2K and +3K warmer world. The new dataset contains kilometer-scale hourly precipitation extremes for the return level of a 100-year event. Due to the inherent biases of radar-based estimates compared to ground observations, the precipitation extremes have been bias-adjusted on return level basis using KOSTRA.
Project
KARE (Klimawandelanpassung auf lokaler Ebene)
Contact
Dr. Patrick Laux (
 patrick.laux@nullkit.edu
0000-0002-8657-6152)
Spatial Coverage
Longitude 5.5 to 15.5 Latitude 47 to 55
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
5.48 MiB (5748259 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2034-03-17
Cite as
Laux, Patrick (2024). Modelled non-stationary kilometer-scale hourly precipitation extremes of a 100-year event under 2 GWL scenarios for Germany. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/PrecExtr100yr

BibTeX RIS
Funding
Federal Ministry of Education and Research
Grant/Award No: 01LR2006D - RegIKLIM - KARE (Regional Information on Climate Action)
Description
Summary:
Findable: 6 of 7 level;
Accessible: 2 of 3 level;
Interoperable: 3 of 4 level;
Reusable: 5 of 10 level
Method
F-UJI online v3.1.0 automated
Method Description
Checks performed by WDCC. Metrics documentation: https://doi.org/10.5281/zenodo.6461229 Metric Version: metrics_v0.5
Result Date
2024-03-19
Result Date
2024-03-19
Description
1. Number of data sets is correct and > 0: passed;
2. Size of every data set is > 0: passed;
3. The data sets and corresponding metadata are accessible: passed;
4. The data sizes are controlled and correct: passed;
5. The spatial coverage description (metadata) is consistent to the data: passed;
6. The format is correct: passed;
7. Variable description and data are consistent: passed
Method
WDCC-TQA checklist
Method Description
Checks performed by WDCC. The list of TQA metrics are documented in the 'WDCC User Guide for Data Publication' Chapter 8.1.1
Method Url
Result Date
2024-03-19
Contact typePersonORCIDOrganization
-

Is documented by

[1] NUKLEUS – Nutzbare Lokale Klimainformationen für Deutschland. (2024). https://www.fona.de/de/massnahmen/foerdermassnahmen/RegIKlim/nukleus.php

Is compiled by

[1] DOI Marra, Francesco; Koukoula, Marika; Canale, Antonio; Peleg, Nadav. (2024). Predicting extreme sub-hourly precipitation intensification based on temperature shifts. doi:10.5194/hess-28-375-2024

Is derived from

[1] DOI Winterrath, Tanja; Brendel, Christoph, Hafer, Mario; Junghänel, Thomas; Klameth, Anna; Lengfeld, Katharina; Walawender, Ewelina; Weigl, Elmar; Becker, Andreas. (2018). Radar-based Precipitation Climatology (RADKLIM) Version 2017.002 Gauge-adjusted one-hour precipitation sum (RW). doi:10.5676/DWD/RADKLIM_RW_V2017.002
[2] HYRAS-DE-TAS - Raster der Tagesmitteltemperatur in °C für Deutschland - HYRAS-DE-TAS, Version v5.0. (2022). https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/air_temperature_mean/
[4] KOSTRA - DWD Climate Data Center (CDC), Raster der Wiederkehrintervalle für Starkregen (Bemessungsniederschläge) in Deutschland (KOSTRA-DWD), Version 2010R. (2020). https://opendata.dwd.de/climate_environment/CDC/grids_germany/return_periods/precipitation/KOSTRA/KOSTRA_DWD_2010R/asc/

Attached Datasets ( 2 )

Details for selected entry
[Entry acronym: PrecExtr100yr] [Entry id: 5275119]